Homework 3

Out: 12 Feb., 2009 Due: 19 Feb., 2009

Note: Questions marked with an asterisk (*) are to be handed in. The others are for practice and will not be graded. Put your solutions to the (*) problems in the (now unique) homework box on Soda level 2 by 4pm on the due date. The usual remarks about clear answers and the collaboration policy still hold. Depending on grading resources, we may grade only a random subset of the problems and check off the rest; so you are advised to attempt all questions.

- 1. Which of the following languages are regular? If the language is regular, exhibit a finite automaton or a regular expression for it. If not, give a *careful* proof using the pumping lemma.
 - (a) (*) The set of all strings over the alphabet {(,)} that consist of correctly nested pairs of parentheses. (E.g., the string '(()())()' belongs to this language, but the strings '())(' and '(()' do not.)
 - (b) (*) The set of all words over the alphabet $\{a, b\}$ in which the number of occurrences of "abb" and of "bba" are the same. [Note: The string abba contains one occurrence of each.]
 - (c) The language $A = \{\underline{w} = 1^k y$, where $y \in \{0,1\}^*$ contains at least k 1's, for some $k \ge 1$ }. Note that $1101010 \in A$ for both k = 1 (its a 1 followed by 101010) and k = 2 (its a 11 followed by 01010), but $100 \notin A$ because there is no k for which the def. applies.
 - (d) The language $B = \{\underline{w} = 1^k y, \text{ where } y \in \{0, 1\}^* \text{ contains } \underline{\text{at most }} k \text{ 1's, for some } k \geq 1\}.$
 - (e) (*) The language $C = \{\underline{w} = 1^k 0y$, where $y \in \{0,1\}^*$ contains <u>at least</u> k 1's, for some $k \ge 1$ }.
 - (f) (*) The set of all words over the alphabet $\{a,b\}$ in which the number of occurrences of "aaa" and of "bbb" are the same. [Note: The string bbbaaaabbb contains two occurrences of each.]
 - (g) The language $\{0^i1^j: i, j \geq 0 \text{ and } i \neq j\}$. [HINT: Why can't you use the pumping lemma in this case? It might be helpful to consider the *complement* of the language.]
- 2. (More closure) Let L be a regular language. Show that the following languages are regular.
 - (a) (*) The language $\min(L) = \{x \in L : \text{no proper prefix of } x \text{ is in } L\}.$
 - (b) The language L_{10} consisting of the lexicographically first 10 strings of L.
 - (c) The language $\frac{1}{2}(L) = \{x : \exists y \text{ s.t. } xy \in L \text{ and } |x| = |y|\}$. [HINT: This part is quite challenging. Given a DFA for L, construct a NFA for $\frac{1}{2}(L)$. The "product construction" used in the proof that regular languages are closed under intersection should be useful here.]
 - (d) (*) The language DROP-OUT(L). For a language L, DROP-OUT(L) = $\{xz : xyz \in L$, where $x, z \in \Sigma^*, y \in \Sigma\}$; i.e., its the language of all strings that can be obtained by removing one symbol from a string in L.
- 3. Let M be a DFA with n states. Prove that the language accepted by M is infinite if and only if M accepts some string of length at least n and less than 2n.

- 4. Which of the following statements are true? If the statement is true, provide a proof; if it is false, provide a simple counterexample.
 - (a) If the language L contains a regular language L', then L is regular.
 - (b) (*) If L_1 and L_2 are not regular, then $L_1 \cap L_2$ is not regular.
 - (c) (*) If $L_1, L_2, L_3 \ldots$ are all regular, then the language $\bigcup_{i=1}^{\infty} L_i$ is also regular.