Homework 4

Out: 19 Feb, 2009 **Due:** 26 Feb., 2009

Note: Questions marked with an asterisk (*) are to be handed in. The others are for practice and will not be graded. Put your solutions to the (*) problems in the (now unique) homework box on Soda level 2 by 4pm on the due date. The usual remarks about clear answers and the collaboration policy still hold. Depending on grading resources, we may grade only a random subset of the problems and check off the rest; so you are advised to attempt all questions.

- 1. This problem consists of four parts, three of which are designed to improve your understanding of the Myhill-Nerode Theorem and the DFA minimization algorithm.
 - (a) (*) Recall the following DFA M, which we saw in Homework 1:

Determine the equivalence relation R_M for this DFA. You should specify the equivalence relation by writing down each of its equivalence classes in the form of a regular expression. [NOTES: (i) Recall that the relation R_M is defined by xR_My iff M ends up in the same state on inputs x and y. (ii) Recall also from HW1 that you have already described the set of strings that take M to each of its states.]

- (b) (*) In class we showed that if L is a regular language, then the equivalence relation R_L (indistinguishability) has only finitely many equivalence classes (these correspond to the states of the minimal DFA for L). Now consider the language $L = \{0^n1^n : n \geq 0\}$. By describing the equivalence classes of R_L , prove that L is *not* regular. [NOTES: (i) Recall that the relation R_L is defined by xR_Ly iff $\forall z(xz \in L \Leftrightarrow yz \in L)$. Of course, we could also prove that L is not regular using the pumping lemma; the point of this problem is to get you to use a different method based on the Myhill-Nerode Theorem.]
- (c) Now use the pumping lemma to show that L is not regular.
- (d) (*) Apply the minimization procedure discussed in class to construct a minimal DFA that is equivalent to the following DFA. Show clearly the steps you used to arrive at your answer; you should consider the pairs of states in lexicographic order.

- 2. Consider the language $L = \{w = a^i b^j c^k : i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}.$
 - (a) Show that L "acts like" a regular language with respect to the pumping lemma. Specifically, give a pumping length p and show that L satisfies the conditions of the lemma for this p.
 - (b) Now show that L is NOT regular.
 - (c) Why is this not a contradiction?
- 3. (*) Show that for any positive integer n there is a language L_n for which both of the following statements hold
 - (a) There is a DFA with n states that recognizes L_n and
 - (b) No DFA with fewer than n states recognizes L_n .
- 4. The pumping lemma says that every regular language L has a pumping length p, and that any string $\underline{w} = w_1 w_2 \cdots w_n \in L$ with $n \geq p$ can be pumped. Clearly if p is a pumping length for L, so is p' with $p' \geq p$. The **minimum pumping length** for L is the smallest p that is a pumping length for L. [e.g., when $L = 01^*$, the minimum pumping length is 2: the string $\underline{w} = 0$ is in L, has length 1, but cannot be pumped (why?), but any string in L of length ≥ 2 must contain a 1 and can be pumped (why?, how?)].

For each of the following languages, find the minimum pumping length and justify your answer.

- (a) $L = 0001^*$
- (b) (*) L = 1011
- (c) $L = 0^*1^*$
- (d) (*) $L = 001 \cup 0^*1^*$
- (e) (*) L = 10(11*0)0
- (f) $L = 0*1*0*1* \cup 10*1$
- (g) (*) $L = (01)^*$
- (h) (*) $L = \varepsilon$
- (i) (*) L = 1*01*01*