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Homework 1 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 32.

1. DFAs for these three languages are as follows:

(a) The set of all 0-1 strings that begin with 0 and end with 1. 3pts
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(b) The set of all words over the English alphabet whose third-last letter is ‘b’. In the machine below,3pts
each state “remembers” the sequence of the last three symbols seen, distinguishing only between ‘b’
and non-‘b’ letters; thus it has eight states (corresponding to all 3-letter strings over an alphabet of two
letters). HereΣ denotes the English alphabet.
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(c) The set of all 0-1 strings that contain at least two 0’s andat most one 1. In the machine below, the3pts
state shifts one place to the right for each 0, and one place down for each 1, stopping when the counts
reach 2. It accepts if the first count reaches 2 and the second does not.
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2. As suggested in the Hint, we describe the sets of input strings w that cause the DFA to end in each of the5pts
states (starting from the initial stateq0):

• stateq0: all stringsw in which every 0 is followed by a 1;

• stateq1: all stringsw that end in 0 in which every other 0 is followed by a 1;

• stateq2: all stringsw with a pair of consecutive 0’s.

Note that these definitions cover all possible input strings, so all we have to do to show the correctness of
the DFA is prove that if we run the DFA on a stringw then it will terminate in stateqi if w satisfies the
property ascribed toqi above. (If some input strings were not covered, then we wouldhave to prove theonly
if direction as well, as it might be possible for the DFA to accept more strings than we claim it does.)

The proof is by induction on the length of the input stringw.

Base case:|w| = 0, that is,w = ǫ (the empty string). The DFA terminates in stateq0, whose property is
satisfied by the empty string: there are no 0’s that are not followed by a 1. The definitions for the other two
states are satisfied vacuously.

Induction step:We make the induction hypothesis that our definitions hold for w′ = {0, 1}n with n ≥ 0;
we now prove that they also hold forw = w′a with a ∈ {0, 1}. We consider the states in which the DFA
might have determined after processingw′:

• stateq0: If a = 0 then the DFA transitions to stateq1. By the induction hypothesis every 0 inw′ is
followed by a 1;w′a now also ends in a 0 so the condition forq1 is met. Ifa = 1 then the DFA stays
in stateq0. Again by the induction hypothesis every 0 inw′ is followed by a 1; this remains true with
the addition of an extra 1.

• stateq1: If a = 0 then the DFA progresses to stateq2. By the induction hypothesisw′ ends in 0; the
addition ofa gives the string a pair of consecutive 0’s, and so the condition forq2 is met. Ifa = 1 then
the DFA transitions back to stateq0. As above,w′ ends in 0 but otherwise has the properties of the
strings that end up inq0. Adding a 1 meets the requirement that every 0 in the whole string is followed
by a 1, including the last 0.

• stateq2: By the induction hypothesis,w′ already has a pair of consecutive 0’s, so any string containing
w′ will have this property; therefore the DFA stays in stateq2 as it should.

We have now proved that the DFA will end up in stateq2 given any stringw with a pair of consecutive 0’s.
Since the other two states are accepting, the DFA accepts iffw does not contain a pair of consecutive 0’s.

3. (a) Simply interchange the accepting and non-accepting states ofM , but leave everything else unaltered.2pts
I.e., if M = (Q,Σ, δ, q0, F ), thenM ′ = (Q,Σ, δ, q0, Q − F ). Sinceδ is unchanged, we have

M acceptsw ⇔ δ(q0, w) ∈ F

⇔ δ(q0, w) /∈ Q − F

⇔ M ′ does not acceptw.

(b) This construction doesnot work whenM is nondeterministic. The reason is that, by our definition of2pts
acceptance for NFAs, whenM accepts only one, not all, of its computations has to be accepting. Thus
in the above construction the modified machineM ′ could accept some of the same strings asM . Here
is a simple counterexample: both the automata below accept (for example) the string ‘0’.
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4. The following DFA shows the full construction. Note that if we pruned away states unreachable from the4pts
start state, the resulting DFA would be the same as in problem1(a):

2,3

1,2,3

1,21,33

1

20 100,1

01

1 0 10

100,1

0

1

5. (a) An NFA forLk is as shown. At each step, if it sees a 0 it “guesses” if this is in fact thekth last symbol 3pts
by going into stateq1; from there, it verifies its guess by moving in exactlyk − 1 more steps to the
final state. This NFA hask + 1 states.
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(b) We construct a DFA such that each of the states representsone of the2k possible length-k suffixes. 3pts
Exactly half of these states, those representing suffixes that start with 0, are accepting states. (If a
string ends up in one of the other states, the string must havehad a 1 in thekth position from the end,
and therefore must be rejected.) We transition from state tostate by simply lopping off the first digit
of the suffix and appending the next character to be read. (Forinstance, ifk = 4 then one transition is
(s1001, 0) → s0010.)

Q = {sz : z ∈ {0, 1}k}

Σ = {0, 1}

δ = {(saw, b) → swb : a, b ∈ {0, 1}, w ∈ {0, 1}k−1}

q0 = s
1k

F = {sz : z starts with 0}

Note the choice of initial stateq0 = s
1k . This is in line with the fact that no zero has been seen when

the computation begins.

(c) LetMk be any DFA that acceptsLk. Let us call two stringsx andy distinguishable byLk if there is a 4pts
stringw such thatexactly oneof xw andyw is in Lk (i.e., eitherxw ∈ Lk andyw /∈ Lk or vice versa).

The point about distinguishable strings is the following. We claim that for any pair of distinguishable
stringsx andy, Mk must end up indifferent states after processingx andy. We can prove this by
contradiction. Supose on the contrary thatx andy are distinguishable butδ∗(q0, x) = δ∗(q0, y).1

Then clearly for any symbola we must haveδ∗(q0, xa) = δ∗(q0, ya), and repeating, for any stringw
we haveδ∗(q0, xw) = δ∗(q0, yw). (We could prove this formally by a simple induction on the length

1Hereδ∗ is the extended transition function defined in the obvious way: for a stateq and stringw, δ∗(q, w) is the state of the DFA
after reading stringw starting in stateq. Formally, we defineδ∗(q, a) = δ(q, a) for each symbola, andδ∗(q, wa) = δ(δ∗(q, w), a).



of w, with |w| = 1 as the base case.) Therefore, it must be the case thatMk either accepts bothxw
andyw, or rejects them both. Sox andy are not distinguishable, a contradiction.

Now we show that the languageLk has many distinguishable pairs of strings. Consider any twolength-
k stringsx, y with x 6= y. Sincex 6= y, they differ in at least one position: so suppose without loss of
generality thatxi = 0, yi = 1. Let w = 1i−1. Thenxw ∈ Lk andyw 6∈ Lk. (This is because inxw
thekth letter from the end isxi, and similarly foryw.) Thusx andy are distinguishable.

Putting the previous two paragraphs together, we conclude that for any two length-k strings,Mk must
end up in different states. Since there are2k such strings,Mk must have at least2k states.


