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Homework 2 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution.

1 First, we observe that any DFA is an all-paths NFA, so all-paths NFAs accept all regular languages.
For the other direction, we need to show that any language accepted by an all-paths NFA is regular.
Let N = (Q,Σ, δ, q0, F ) be an arbitrary all-paths NFA. We will construct a standard NFA M =
(Q′,Σ, δ′, q′

0
, F ′) that recognizes the same language asN . The construction will be similar to the

conversion from NFAs to DFAs discussed in class (and in Theorem 1.19 of Sipser). The resulting NFA
M will be almost a DFA, in that there will be at most one possiblepath in each computation. However,
unlike in a DFA, every time we see a “dying” computation inN , the corresponding computation inM
will die as well. (Note that this is where our construction differs from the NFA-to-DFA construction!)

Q′ = P(Q)

q′0 = {q0}

δ′(R, a) =

{

∅ if for somer ∈ R, δ(r, a) = ∅;

{q ∈ Q | q ∈ E(δ(r, a)) for somer ∈ R} otherwise.

(Recall thatE(R) is the set of states reachable fromR using zero or moreǫ transitions.) Finally, we
wantM to be accepting if its final state containsonlyaccepting states ofN , so we defineF ′ = P(F ).

An alternative argument is the following: First, augment the all-paths NFAN into an all-paths NFA
N1 such thatN1 accepts the same language asN , but no computation ofN1 dies. (One way to do this
is to add a rejecting stateqdie to N ; then for all statesq ∈ Q ∪ {qdie}, add a transition fromq to qdie

labeled by all symbols inΣ unused by other outgoing arrows atq.) Now, reverse the accepting and
rejecting states ofN1; call the resulting machineN2. Think of N2 as a standard NFA: The language
accepted byN2 is then the complement of the languageL accepted by the all-paths NFAN1. It
follows that the complement ofL is regular. Since regular languages are closed under complement
(see Problem 3 of Homework 1),L must be regular as well.

3 (Coming)

4 For each of these, there are many possible valid regular expressions.

(b)
((

a ∪ e ∪ i ∪ o ∪ u
)

Σ∗ ∪ ǫ
)(

ing
)

(d) 0∗
(

10∗10∗10∗
)

∗



(f) (10 ∪ 01)∗(1 ∪ 0 ∪ ǫ)
To see the above, first notice that every even length string that belongs in the language is such
thateveryprefix of it has equally many zeros and ones, because if not, then there are either two
more zeros than ones or two more ones than zeros. It is easy to check, by induction on the length
of the string, that the set of all even length strings where every prefix has the same number of
zeros and ones is given by(10 ∪ 01)∗. To then get our language, we simply concatenate either
a zero or a one or nothing to the end of every even length stringwith the above property.

5 (a) False. E.g., takeR = 0 andS = 1. Then the string010 belongs to(R∪S)∗ but not toR∗ ∪S∗.

[Note that, when the answer is ‘False’, the only convincing way to justify it is by giving a concrete
counterexample (like the one above). More general, woolly arguments don’t work. The same
applies to part (c) below.]

(b) True. The fact thatL(R∗) ⊆ L
(

(R∗)∗
)

is immediate because the language on the right contains
all words that consist of finite sequences of words fromL(R∗), so in particular it contains all
words inL(R∗). We also have to show thatL

(

(R∗)∗
)

⊆ L (R∗). To see this, note that any word
in L

(

(R∗)∗
)

can be written in the formw1w2 . . . wn for somen ≥ 0, where eachwi is a word
in L(R∗). But eachwi can in turn be written in the formxi1xi2 . . . ximi

for somemi ≥ 0, where
eachxij is a word inL(R). So any word inL

(

(R∗)∗
)

can be written as a sequence of words
from L(R), and hence belongs toL(R∗). ThusL

(

(R∗)∗
)

⊆ L (R∗), as claimed.

[You could try for some kind of informal argument for this part, e.g., based on conversion to
NFAs. The above scheme is really the only convincing way to gohere: note that we’re just trying
to show that two sets are equal, so we have to show each is contained in the other.]

(c) False. E.g., takeR = 0 andS = 0 ∪ ǫ. ThenL(R∗) = L(S∗) = {0}∗, but L(R) = {0} and
L(S) = {0, ε}.


