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Some Homework 3 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may
be more than one correct solution.

1. (a) Not regular. Proof by contradiction: assume thatL = {w : w has balanced parentheses} is regular.
Let n be the constant guaranteed to exist by the pumping lemma. Consider the stringw = (n)n — i.e.,
n (’s followed byn )’s. Clearlyw has balanced parentheses, sow ∈ L. Thus, since|w| ≥ n, by the
pumping lemma we must be able to writew = xyz with |xy| ≤ n, |y| ≥ 1, and such thatxyiz ∈ L
for all i ≥ 0. However, sincew starts withn (’s, y must consist entirely of one or more (’s. Therefore,
for anyi > 1, xyiz /∈ L since it has more (’s than )’s. This is a contradiction, soL is not regular.

(b) Regular. The key observation here is that successive occurrences ofabb and ofbba in any string over
{a, b} mustalternatealong the string. To see this, one can show that in any stringw, between any two
occurrences ofabb there is an occurrence ofbba and vice versa. Consider an arbitrary substring ofw
delimited by two occurrences ofabb. This string has the formabbuabb, whereu is a possibly empty
string. If u contains noa symbols, then the stringbbua ends inbba. Otherwise, suppose that the firsta
in u occurs at positioni; then the stringbbu1 . . . ui ends inbba. For the other direction, again consider
an arbitrary substring ofw delimited by two occurrences ofbba. Then thereversalwR of w has the
form abbuabb for some stringu. By the above argument,wR must containbba as a substring, sow
itself contains an occurrence ofabb.

For a stringw, let D(w) denote the difference between the number of occurrences ofabb and ofbba in
w. By the above argument, for anyw, |D(w)| ≤ 1. At this point it is not difficult to see what a DFA
for our language should look like. The states should keep track of the last two symbols seen, as well
as the sign of the quantityD(w). (See diagram; the start state isqst, and the accept states are marked
in thicker lines.)
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[The key point in this question is to observe that occurrencesof abb andbba must alternate along the
string.]

(e) Not regular. Assume that this language is regular, and let n be any number bigger than both2 and the
pumping length. Consider the stringw = anbn; this containsn − 2 copies ofaaa andn − 2 copies of
bbb, so it is in the language. By the pumping lemma there exists a split w = xyz such that|xy| ≤ n,
y 6= ǫ andxy2z is also in the language. However, wheneverx andy satisfy the first two conditions,
the stringxy2z will be of the formambn, for somem > n. This string has more copies ofaaa than
bbb, so it cannot be in the language. Contradiction.

(f) Not regular. We do a proof by contradiction using closureproperties. (Note that it apparently isn’t
possible to use the pumping lemma directly here, because we’d have to show that any possible pumping
of a substringy leads to a string that’snot in L, which is hard asL is not very tightly constrained.)

So assumeL = {0i1j : i, j ≥ 0 andi 6= j} is regular. Since regular languages are closed under
complementation, the complementL is also regular. Now consider the languageL′ = {0i1j : i, j ≥
0}, which is certainly regular (it is denoted by the regular expression0∗1∗). Since regular languages
are also closed under intersection,L ∩ L′ must also be regular. However,L ∩ L′ = {0i1i : i ≥ 0},
which we know isnot regular (as we saw in class, by the same argument we used to show that the set
of 0-1 strings with equal numbers of 0’s and 1’s is not regular). Therefore we have a contradiction, so
we deduce thatL itself must not be regular.

An alternative argument for this part, using the Myhill-Nerode Theorem, goes as follows. We show
that the relation∼L splits{0, 1}∗ into infinitely many equivalence classes, which implies that L is not
regular. Indeed, consider the collection of stringsC = {0n : n ≥ 0}. We claim that all strings inC
are in distinct equivalence classes. For suppose that thereexistsm 6= n such that0m ∼L 0n. Then, by
the definition of∼L, 0m1n ∼L 0n1n. But this is impossible since0m1n ∈ L while 0n1n 6∈ L.

2. (a) SinceL is regular, there is a DFAM that accepts it. Modify the DFA in the following way: take all
outgoing edges from all the accepting states (including self-loops) and reroute them to point to a dead
state. We claim that the resulting DFAM ′ decidesmin(L). To see this, note thatM ′ certainly cannot
accept any string that is not accepted byM . And a stringw is accepted byM ′ iff the accepting com-
putation ofM on w does not pass through any intermediate accepting states. But this latter condition
corresponds precisely to saying that no proper prefix ofw is accepted byM , as required.

(b) (not *) This language is finite and therefore regular, since every finite language is regular. (To see this,
just write down a regular expression that takes the union of the singleton strings.) However, note that
given a FA forL we donot in general know how to construct a FA forL10: we know only that such an
FA exists. Thus, unlike parts (a) and (c) of this problem, this proof isnot constructive.

(d) (coming)

4 (b) False. E.g., letΣ = {0, 1}, L = {0n1n : n ≥ 0}, andL′ = {0m1n : m 6= n}. ThenL andL′ are both
non-regular. HoweverL1 ∩ L2 = ∅, which is regular.

(c) False. For a counterexample, letL be any non-regular language (e.g.,L = {0i1i : i ≥ 0}). Then
we can writeL =

⋃
∞

i=1
Li, where eachLi consists just of theith string inL in lexicographic order.

Clearly eachLi is finite and hence regular. However, the union of all of theLi is L, which is not
regular.
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