
Back Propagation 
 

Basic Notations: 
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If we use the sigmoid as the activation function, then 
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Network with 1 hidden node: 
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E = Error = ½ ∑i (ti – yi)2  
 
 

For the output layer, we want to change the weights so that: 
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The derivative of the sigmoid is just   so ∆( ii yy −1 ,) ( ) ( ) jiiiiji yyyytW ⋅−⋅−−×−= 1α  
 
which we write as ijji yW δα ×−×−=∆ ,  
 
where ( ) ( iiiii yyyt −⋅−= 1 )δ   (you can think of it as the target amount of adjustment). 



For the hidden layer, we want to do something similar: 
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So we use the chain rule again:
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The second and third terms are just like before, just different indices.  
 
 
The first term is tricky – you want to sum up the errors that this yj has caused down the line. 
  

So we apply the chain rule again: ∑∑ ⋅⋅−−=
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Plugging this all in, we get kj
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Plugging in the sigmoid,  we get  ( ) ( ) kjj
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which we again write as jkkj yW δα ×−×−=∆ ,  
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and in fact, you'll notice that this is just ( )jj
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and the first time is just like a weighted sum of the target adjustment at the output level. 


