Back Propagation

Basic Notations:

If we use the sigmoid as the activation function, then $y_{i}=f\left(x_{i}\right)=\frac{1}{1+e^{-x_{i}}}$
Network with 1 hidden node:

$$
\mathrm{E}=\text { Error }=1 / 2 \sum_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right)^{2}
$$

For the output layer, we want to change the weights so that: $W_{j i} \leftarrow W_{j i}-\alpha \times \frac{\partial E}{\partial W_{j i}}$
Thus the amount that we want to update is given by $\Delta W_{j i}=-\alpha \times \frac{\partial E}{\partial W_{j i}}$
we calculated using the chain rule that $\frac{\partial E}{\partial W_{j i}}=\frac{\partial E}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial W_{j i}}=-\left(t_{i}-y_{i}\right) \cdot f^{\prime}\left(x_{i}\right) \cdot y_{j}$
The derivative of the sigmoid is just $y_{i}\left(1-y_{i}\right)$, so $\Delta W_{j i}=-\alpha \times-\left(t_{i}-y_{i}\right) \cdot y_{i}\left(1-y_{i}\right) \cdot y_{j}$
which we write as $\Delta W_{j i}=-\alpha \times-y_{j} \times \delta_{i}$,
where $\delta_{i}=\left(t_{i}-y_{i}\right) \cdot y_{i}\left(1-y_{i}\right)$ (you can think of it as the target amount of adjustment).

For the hidden layer, we want to do something similar: $\Delta W_{k j}=-\alpha \times \frac{\partial E}{\partial W_{k i}}$
So we use the chain rule again: $\frac{\partial E}{\partial W_{k j}}=\frac{\partial E}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial x_{j}} \cdot \frac{\partial x_{j}}{\partial W_{k j}}$
The second and third terms are just like before, just different indices.

The first term is tricky - you want to sum up the errors that this y_{j} has caused down the line.
So we apply the chain rule again: $\frac{\partial E}{\partial y_{j}}=\sum_{i} \frac{\partial E}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial y_{j}}=\sum_{i}-\left(t_{i}-y_{i}\right) \cdot f^{\prime}\left(x_{i}\right) \cdot W_{j i}$
Plugging this all in, we get $\frac{\partial E}{\partial W_{k j}}=\left(-\sum_{i}\left(t_{i}-y_{i}\right) \cdot f^{\prime}\left(x_{i}\right) \cdot W_{j i}\right) \cdot f^{\prime}\left(x_{j}\right) \cdot y_{k}$

Plugging in the sigmoid, we get $\Delta W_{k j}=-\alpha \times\left(-\sum_{i}\left(t_{i}-y_{i}\right) \cdot y_{i}\left(1-y_{i}\right) \cdot W_{j i}\right) \cdot y_{j}\left(1-y_{j}\right) \cdot y_{k}$
which we again write as $\Delta W_{k j}=-\alpha \times-y_{k} \times \delta_{j}$,
where $\delta_{j}=\left(\sum_{i}\left(t_{i}-y_{i}\right) \cdot y_{i}\left(1-y_{i}\right) \cdot W_{j i}\right) \cdot y_{j}\left(1-y_{j}\right)$
and in fact, you'll notice that this is just $\boldsymbol{\delta}_{j}=\left(\sum_{i} W_{j i} \cdot \delta_{i}\right) \cdot y_{j}\left(1-y_{j}\right)$
and the first time is just like a weighted sum of the target adjustment at the output level.

