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Abstract

This paper describes an implemented computational
model of lexical development for the case of action verbs.
A simulated agent is trained by an informant labeling
the agent's actions (here hand motions), and the system
learns to both label and carry out similar actions. The
verb learning model is placed in the broader context of
the NTL project on embodied natural language and its
acquisition. Based on experimental results and projec-
tions to the full range of early lexemes, a signi�cantly
enriched model is proposed and its properties discussed.

Introduction

The embodiment of concepts and language is a central
issue in cognitive science. How can a neural system rep-
resent and learn concepts, and organize them into a set
of lexical items? For almost a decade, the Neural The-
ory of Language (NTL) group at ICSI and UC Berkeley
has sought computational insight into these questions by
asking them of structured connectionist systems, rather
than the physical neural systems of the brain (Feldman
et al., 1996). The basic questions of neural and cogni-
tive development have been receiving increasing atten-
tion from the connectionist perspective. But despite con-
siderable theoretical and modeling work on the acquisi-
tion of syntax, there does not appear to be any detailed
theory of lexical development comparable to the NTL
project. This paper is an overview some of of our recent
results and challenges.
One critical empirical �nding from studies of language

acquisition is that the child's �rst words label not only
things, but also relationships, actions and internal states
(Tomasello, 1995). Clearly, embodiment is central to all
of these. Early lexical development thus provides an
ideal task for studying embodied cognition, since we can
isolate linguistically and conceptually simple situations
for which to construct and test detailed models.
Our �rst major e�ort was the dissertation work of

Regier (1996), a computational model of how some lex-
ical items describing spatial relations might develop in
di�erent languages. Since languages di�er radically in
how spatial relations are conceptualized, there was no
obvious set of primitive features to build into the pro-
gram. The key to Regier's success came directly from
embodiment: all people have the same visual system
from which all visual concepts must arise. By includ-
ing a simple but realistic visual system model, Regier's

program was able to learn spatial terms from labeled ex-
ample movies for a wide range of languages, using con-
ventional back-propagation techniques.

The project's scope was expanded to verbs with Bai-
ley's dissertation work (Bailey, 1997; Bailey et al., 1997),
a computational model that learns to produce verb la-
bels for actions and also carry out actions speci�ed by
verbs that it has learned. A shortcoming of the stan-
dard view of lexical acquisition is that it provides no ac-
count of how a child learns to make use of the concepts
she learns and the words that label them. This same
weakness appears as a technical consequence of using
back-propagation in Regier's work and in PDP models:
even when the network learns perfectly how to classify
a domain, it has no mechanism for executing the action.
Bailey's work addresses this shortcoming by employing
learning algorithms that produce usable representations
of actions. After training on examples of action-word
pairs, the system can produce an appropriate label for
a particular motor action based on features of both the
action and the world state. In addition, however, the
learned verb representation also functions as a command
interface that allows the system to execute a given verb.

Cross-linguistic experiments with both Regier's spa-
tial relations network and Bailey's verb-learning system
reveal both strengths and weaknesses of the current state
of development. We believe that the basic principle that
early word learning across languages can be modeled
very well by embodiment-based structured connection-
ist models has been established. On the other hand, it
is clear that our systems must incorporate much richer
models of the neural substrate to handle even the early
lexical development of children. To better estimate what
is required, the group is beginning to study the full range
of early word learning, rather than continuing to focus
on isolated sub-vocabularies.

The original name of the project, L0, was chosen be-
cause zero was the approximate percentage of language
we were attempting to cover. The current e�ort is still
concerned with only a tiny fraction of the complexity
of language learning, but because we are now grappling
with all of a child's �rst (say) 200 words, we have pre-
sumptuously renamed the project NTL. In this paper,
we outline plans for expanding our detailed connection-
ist modeling to cover all early lexical acquisition. As
always, the theories and systems are intended to apply
to all natural languages.



Representational mechanisms

To bridge the gap from embodied experience to its ex-
pression as abstract symbols in language, we have found
it necessary to work at multiple levels of description.
Regier's work, for instance, linked the connectionist and
cognitive levels, with the neural level implicit. Subse-
quent more complicated domains have required us to
add a computational level as an abstraction from the
connectionist level. Although the focus of this paper is
this computational level, the NTL papers in the 1997
Conference of the Cognitive Science Society spanned all
�ve levels:

cognitive: words, concepts
computational: f-structs, x-schemas (see below)
connectionist: structured models, learning rules
computational
neuroscience: detailed neural models

neural: [still implicit]

Our computational level is analogous to Marr's and
comprises a mixture of familiar notions like feature struc-
tures and a novel representation, executing schemas, de-
scribed below. Apart from providing a valuable scienti�c
language for specifying proposed structures and mecha-
nisms, these representational formalisms can be imple-
mented in simulations to allow us to test our hypotheses.
They also support computational learning algorithms so
we can use them in experiments on acquisition. Impor-
tantly, these computational mechanisms are all reducible
to structured connectionist models so that embodiment
can be realized.
The most novel computational feature of our cur-

rent e�ort is our representation of actions, executing
schemas (x-schemas for short), so named to distin-
guish them from other notions of schema and to remind
us that they are intended to execute when invoked. We
represent x-schemas using an extension of a computa-
tional formalism known as Petri nets (Murata, 1989). A
Petri net is a bipartite graph containing places (drawn
as circles) and transitions (rectangles). Places hold to-
kens and represent predicates about the world state or
internal state. Transitions are the active component.
When all places pointing into a transition contain an
adequate number of tokens (usually 1), the transition
is enabled and may �re, removing its input tokens and
depositing a new set of tokens in its output places. X-
schemas cleanly capture sequentiality, concurrency and
event-based asynchronous control; with our extensions
they also model hierarchy and parameterization.
To keep things minimal, our models use only one

other computational mechanism|feature structures
(f-structs for short, drawn as a row of double-boxes).
F-structs are used for static knowledge representation,
parameter setting, and binding. They have been chosen
to be compatible with the \f-structures" in the literature
on uni�cation grammars, and are similar to well-known
AI slot-�ller mechanisms. From these simple constructs,
a wide variety of modeling structures can be built.
The bottom third of Figure 1 depicts an example x-

schema for sliding an object on a tabletop. The Slide

x-schema captures the fact that people shape the hand
while moving the arm to an object and that large and
small objects are handled di�erently. It includes a loop
that continues motion when not yet at the goal and a
separate little schema for tightening the grip if slip is
detected.

linking
features

relevant

used by schema
world state features

at goal

2.3 lbs

weight

false

done

Slide
Schema

start

push

aspectschema posture

low  0.7 once  0.6

aspect

palm  0.7

schema

once  0.8

posture

cube  0.8

object

object

button  1.0

postureschema

extend  0.9palm  0.9 high  0.9

shove

extend  0.9

elbow jnt

slide  1.0

slide  1.0

schema posture direction aspect

grasp|palm|indx flex | extend up | dn | lf | rt once | iteratedlow | med | hi

motor parameter features world state features

cube | button

objectelbow jnt

slide | depress

small

large

at goal

at goal
not

2

2

GRIP

PALM
PRESHAPE

GRIPslipping
TIGHTEN

APPLY

MOVE
ARM TO
(objloc)

force,
dur)

(horiz-dir,

MOVE
ARM

GRASP
PRESHAPE

elbow jnt

accel

accel

accel

index  0.9depress 1.0

| |

Figure 1: An overview of the verb-learner at the com-
putational level, showing details of the Slide x-schema,
some linking features, and two verbs: push (with two
senses) and shove (with one sense).

Bailey's verb learning model

An overview of Bailey's verb learning system is given
in Figure 1. In this model a special linking f-struct
(center of Figure 1) plays an important role as the sole
interface between language and action. It maintains bidi-
rectional connections to the x-schemas: an x-schema re-
ceives bindings from f-structs and produces additional
bindings during its execution. In this way, actions can
be translated to and from semantic features. More gen-
erally, we claim that the requirements of parameterizing
x-schemas are the principal determiner of which seman-
tic features get encoded in a language. One critical link-
ing feature is the name of the x-schema generating the
action. Others include motor parameters such as force,
elbow joint motion, and hand posture. Some world state
features are also relevant, such as object shape.
Each sense of a verb is represented in the model by

an f-struct whose feature values are probability distri-
butions. Features are presumed independent and the
representation is conjunctive or gestalt-like in nature.
The top third of Figure 1 shows several word senses for
the verbs push and shove. The upper left ellipse gives
f-structs for two senses of push. The top sense is a hand
motion that invokes the Slide x-schema. The ellipse
on the upper right shows that shove also codes for the
Slide x-schema but speci�es high acceleration.
In execution mode, a verbal command is interpreted

by choosing the sense that best matches the current



world state. This sense is in turn used to set the linking
f-struct, thus determining which x-schema is to execute
and with what parameters. For example, shove speci-
�es both a Slide x-schema and high acceleration, but
the force required depends (at least) on the size of the
object involved, which is not speci�ed in the utterance.
The verb learning model assumes that the child (or

agent) has already acquired various x-schemas for the
actions of one hand manipulating an object on a table,
and that an informant labels actions that the agent is
performing. As in Regier's work, we avoid some hard
but, we feel, separable issues by assuming that the in-
formant supplies just the verb. The problem faced by
the model (and the child) is thus to learn how the verbs
relate to its actions and goals. The detailed learning
mechanisms are explained in (Bailey et al., 1997) and
(Bailey, 1997) and will not be described here.

Learning results

Extensive testing of the verb learning system has demon-
strated its ability to acquire some important distinctions
between verbs of hand motion. For English, the system
acquired 18 verbs from 200 labeled examples, with fea-
tures such as schema name and hand posture playing
a more important role in determining word sense than
object size and direction of motion. The system had
a 78% success rate for recognizing new examples. The
relatively better performance of the system in obeying
commands (81%) is not surprising, since it was eval-
uated by executing its learned model of the speci�ed
word and then trying to recognize the action. Interest-
ingly, for both types of testing, errors consistently in-
volved subtle distinctions, such as that between heave
and lift, that caused the system to choose a plausible
alternative. There were no gross errors.
Experiments in Farsi, Hebrew and Russian have con-

�rmed the system's ability to model cross-linguistic vari-
ation, with many parameters used during training prov-
ing robust across experiments. Results echo those for
English in some respects: most performance errors in-
volved closely related verbs, with the system often fa-
voring speci�c verbs over more general ones. But as
expected, the lexicons acquired for each language di�er
signi�cantly. For example, the distinction between Farsi
hol daadan (away-directed motion) and feshaar daadan
(applying force without motion) depends more on force
and duration than that between English push and pull.
The Hebrew lexicon was smaller than the English lex-
icon and involved more general verbs of motion, such
as hirxik (make-far) and kerev (make-close); re
ecting a
typological tendency of verbs to encode either path (He-
brew) or manner (English). Results for this simpli�ed
Hebrew were even stronger than those for English.
Di�ering lexicalization patterns also shed light on

weaknesses of the model. Some of these, such as the
need for more world features (such as object weight),
are easily remedied. Other problems suggest that some
re�nement of the underlying model may be necessary: in
general, the system has not been designed to capture ei-
ther correlations between features (such as that between

object size and force for push) or abstract verb senses
(such as move) needed to learn hierarchical lexicons.

Challenges of a rather di�erent nature account for the
system's di�culties in handling the widespread gram-
maticization of aspect and deixis in Russian verb a�xes:
although some aspectual distinctions were acquired from
a simpli�ed training set of Russian verbs, the system
had di�culties acquiring word senses in which deictic
reference depends on multiple inter-dependent features.
These problems arise for English verb phrases as well:
the direction of motion in take away is opposite that of
give away despite their commonparticle, since they have
di�erent deictic centers. It also remains unclear whether
the current system can handle more complicated prob-
lems involving aspectual composition and goal-oriented
actions. These shortcomings underscore the need for a
richer model of intentional state that can represent al-
ternate perspectives and goal-driven actions.

The remainder of the paper outlines some extensions
to the x-schema representational framework that address
some of these problems and suggests how these additions
should signi�cantly extend the range of learnable words.

An x-schema simulation environment

In recent work (Narayanan, 1997), we have extended the
basic x-schema representation to model domain theories,
with the same mechanism used for acting and reasoning
about actions in a dynamic environment. The basic idea
is simple. We assume that people can execute x-schemas
with respect to f-structs that are not linked to the body
and the here and now. In this case, x-schema actions are
not carried out directly but instead trigger simulations
of an imagined situation. It is easy to imagine, for in-
stance, sliding King Kong up to the top of the Empire
State Building and to predict what happens upon let-
ting go. The NTL model for such mechanical planning
assumes that the Slide x-schema can run with respect
to a world model with simple qualitative physics. Physi-
cal models that people normally use appear to be simple
enough to �t our paradigm fairly well, and some ele-
mentary ones have been implemented. We model the
physical world as independent x-schemas with links to
the x-schema representing the planned action. These x-
schemas can interrupt one another or otherwise a�ect
execution, for instance by changing f-struct values. A
simpli�ed simulation of the dropping of an object and
the corresponding world simulation, depicted in Figure
2, illustrates the central ideas.

On the left of Figure 2, we have an x-schema cor-
responding to the important control transitions of the
underlying Drop x-schema (Narayanan, 1997). On the
right are x-schemas corresponding to the agent's simu-
lation of the world. Both the agent's actions and the
world's simulated evolution a�ect the agent's mental
state. At the start of the simulation, the object is sup-
ported by an agent who then withdraws support as as
result of the Drop action, consuming the token at the
place labeled supported(obj1) and, through an inhibitory
link, triggers the Fall x-schema. Fall simulates the
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Figure 2: X-schema simulation of Drop, resulting in the
object falling and either breaking or bouncing.

decreasing height of the object until it hits the ground.1

Once the object hits the ground, it may bounce back to
some new height, depending on the impact force and the
object's elasticity. If the object is brittle (like a vase), it
does not bounce but will instead break.
In our simulation framework, whenever an executing

x-schema makes a control transition, it potentially modi-
�es state, leading to asynchronous and parallel triggering
or inhibition of other x-schemas. We believe such a sys-
tem design supports a broad notion of action, in that the
same active representation can be used for monitoring,
control and inference. The notion of state as a graph
marking is inherently distributed over the network, so
the working memory of an x-schema-based inference sys-
tem is distributed over the entire set of x-schemas and
f-structs. Of course, this is intended to model the mas-
sively parallel computation of the brain.
This x-schema simulation framework has already

proven useful in modeling metaphoric reasoning about
event descriptions in abstract domains such as interna-
tional economics. A crucial aspect of the implemented
model is its capacity to exploit domain knowledge of
spatial motion and manipulation (implemented as x-
schema simulations) for real-time simulative inference.
Results of applying our model to discourse fragments
from newspaper stories in international economics show
that crucial facts about abstract plans, goals, resources
and intent can be expressed by projections from embod-
ied concepts. Further details of this work can be found
in (Narayanan, 1997). In the rest of this paper, we
show how using and extending this simulation frame-
work helps us overcome some of the limitations outlined
earlier and cover a wider range of early child language.

Extensions

In this section, we examine the complete early child vo-
cabulary and its implications for the direction of our
modeling e�orts. Although early vocabularies di�er
widely both within and across languages, published stud-
ies are su�cient for identifying the most common words.
As is well known, the most frequent word types (al-

1To simplify exposition, we leave out the relationship com-
puted between the initial height and impact strength.

though not tokens) are nouns, which we continue to view
as relatively unproblematic cases to be dealt with later. 2

Similarly, early adjectives seem comparatively straight-
forward from a computational modeling perspective and
moreover are not very common initially. Deferring work
on nouns and adjectives allows us to focus on the more
challenging early words.
For concreteness, let us consider the 49 words used by

the most children in the Bloom (1993) preschool study.
Half of these are nouns or names of sounds like boom,
moo or woof. When we consider the other words, several
issues come to the fore. In particular, two methodologi-
cal issues come prior to any detailed modeling: First, it
is known that children often use a word very di�erently
from how an adult would. For example, down and more
from the right hand column in Table 1 are often initially
requests. This is closely related to the second, more gen-
eral issue: any serious modeling must be based on the
physical and intentional context in which the child is us-
ing a given word. The literature is not complete in this
regard, but it is good enough to get us started.

box cookie
choo-choo door
get eye banana
girl go boom
hammer here bottle apple
horse moo cow boy baby
in no more daddy that mommy ball
out on shoe this bead bye no down
sit truck spoon uhoh open hi oh juice
two woof there whee yes yum up more
7 8 9 10 11 12 13 14

Number of children

Table 1: Words learned by 7 or more children, repro-
duced from Bloom (1993).

Several of the 23 words in the table that are not nouns
or names of sounds (shown in bold) appear to be cov-
ered by our previous e�orts to model the acquisition of
spatial relation terms (Regier) or verbs of personal move-
ment (Bailey), although really learning even these words
involves some rather deep issues to which we will return
later in this section. With this proviso, we can count four
verbs of action (get, sit, go and open) and �ve spatial re-
lation words (in, out, on, up and down) as understood.
Beyond the cases arguably covered by our previous

models, the remaining lexemes again cluster into a small
number of basic kinds. There are four that appear to be
express emotion: uhoh, whee, oh (surprise) and yum. For
our purposes, these present no basic problems. One as-
sumes that the child may often hear a parent making the
appropriate sound that correlates with the child's own
emotional state, often with additional cues in the form
of intonation patterns and facial expressions. Obviously
enough, serious computational modeling of emotion is
not to be taken lightly, but it doesn't seem necessary for
our current purposes.
The meanings of the remaining items all depend on

conversational context or reference. There are two greet-

2Of course, to really implement an object naming system
would require solving the computer vision problem.



ings, hi and bye, and four general communication terms,
so called because their communicative content is under-
standable only relative to their discourse context; these
are yes, no, more and no more. Also, there are two
adult spatial adverbs, here and there, which again rely
crucially for their meanings on the physical context of
the conversation.

Both this and that similarly have referential potential
only in conversational context. Note also that in adult
speech they are each members of two closed classes: ar-
ticles and pronouns. As such they play important func-
tions at both the discourse level (by pointing anaphor-
ically to other discourse elements) and the sentence-
syntactic level (since articles are associated with an ex-
tremely restricted range of syntactic environments and
thus are good predictors of the syntactic class of the next
item). Beyond their semantic dependence on conversa-
tional setting, then, the development of speci�c gram-
matical functions for these lexical items poses a partic-
ular challenge and opportunity for an embodied NTL
model of how they might be learned.

As this sampling demonstrates, many early lexemes
depend on conversational context and thus present the
same basic challenge to the NTL paradigm: model-
ing other people.We can simplify this task by assuming
that these lexemes originally label or augment pre-verbal
communication acts. Children develop communication
patterns with their parents well before they speak; there
are patterns of shared eye movements and other physical
and vocal gestures (Foster, 1990) that form an obvious
possible substrate for the deictic articles this and that.
And no parent needs to be told about no.

Under the assumption that pre-linguistic communica-
tion routines are a necessary precursor to learning com-
munication terms, the challenge to the NTL paradigm
becomes one of modeling the interaction of the child's
own mental representations with its representations of
other agents. This simulation of other agents is a di-
rect extension of the general x-schema simulation envi-
ronment described earlier. Instead of passive x-schemas
representing the physical world as in Figure 2, we use
x-schemas that model the other agent. The interactions
between the model's plans and the anticipated response
of the other agent are computationally the same as in
the case of physical simulation, although models of other
agents must be much richer, including models of both
their actions and their beliefs.

start ongoing finish done
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done

start ongoing finish done

FeedMe(Mom)
Mom’s state

Model of

full(me)

Inform(Mom, "no more")

food

full

My state

Figure 3: Depiction of child's own state and model of
her mother's state in a context in which the child might
say no more to halt feeding.

Figure 3 illustrates one context in which the phrase no
more might be used. The simpli�ed x-schemas and state
representations depict both the child's own actions (Eat,
Inform) and her model of her mother'sFeedMe action.
The Eat schema on the left is enabled by the presence
of food and continues until the child is full. The �gure
models a point when the child, having eaten her �ll, is
using the phrase no more to informing her mother that
she is full, which she knows will stop her mother's feeding
process. This communicative act presumably replaces or
augments earlier gestural x-schemas.

This approach accommodates many simple cases in
which a lexeme labels some action in the child's mental
model of (conversational) context. But more compli-
cated semantic distinctions will require additional mech-
anisms. Let us return to the four action verbs and �ve
spatial relation words that appear to be explained by
previous NTL models. The previous models took a �xed
perspective with respect to which all words were learned.
Regier's spatial term network takes what we call the ob-
server perspective; the learning agent views scenarios
that are then labeled. Bailey's action verb assumes what
we call the agent perspective; the learning agent receives
labels for its own actions. Regier gave no hint how an
agent who learns to label a scene as into would know
how to apply this label to its own actions. Bailey is sim-
ilarly silent on how an agent who learns that one of its
actions can be called push would recognize the same ac-
tion when carried out by others. The situation is even
more complex than this | there is at least one additional
basic perspective, which we call the experiencer. Being
pushed is experientially quite distinct from either push-
ing or observing some third party pushing. Similarly, it
is quite di�erent to put a toy in your mouth, see milk
put in the refrigerator or be put in your bath.

As is clear from the words of our sample, children's
initial word meanings may take any of the three basic
perspectives of agent, experiencer or observer. Most
nouns are, of course, learned by observation, although
some (eye, boy) might be learned �rst as part of one's
own body or as a reference to oneself. Emotion words
and actions like sit (and Bailey's examples) are normally
learned �rst from the agent perspective. At least for
American middle class children, words like up and down
are �rst used in the experiencer perspective | the child
is picked up or put down when the word is used. It is-
n't terribly important which perspective comes �rst for
some lexeme for a given child | the question is how
all of these come to be associated with the same term.
Crucially, can a term learned from one perspective be
understood and used from the others? We know of no
systematic study of this transfer, but the anecdotal evi-
dence suggests that it is common.

The multiple perspectives and the apparent ease with
which children transfer among them presents a strong
challenge for the NTL project of constructing detailed,
neurally plausible models. Our proposed solution is to
further extend x-schemas to support recognition as well
as execution. Referring once again to Figure 1, one can
imagine that an agent has the ability to recognize some-



one else carrying out a Slide action. That is, the x-
schema formalism can also be used as an active template
to recognize actions as well as carry them out.

This solution is computationally elegant and has some
experimental basis, but it is still very speculative. In
fact, there have been connectionist models that work ex-
actly this way. The most relevant is Goddard's thesis
system (1992) that recognizes human gaits from stick
�gure movie input. Goddard found that the best way
to recognize a motion was to have an x-schema-like ac-
tive representation that was brought into synchroniza-
tion with the incoming visual data. In a good match,
the simulation predicted the input stream and the visual
recognition became easy. Alternative models competed
in the usual connectionist way to provide the best match
for a data stream.

There is also some developmental and biological sup-
port for this kind of model, often discussed under the
rubric of imitation. Despite controversy about the extent
to which other animals share this ability (Hauser, 1996),
imitation is clearly a crucial aspect of human learning.
Children can imitate a limited range of facial expressions
just after birth, suggesting a connection between recog-
nizing one of these behaviors and the motor schema for
carrying it out. The animal literature contains reports
of cells in monkey pre-frontal cortex that �re actively
either when the monkey itself carries out a speci�c ac-
tion or when it sees another primate carry out a similar
action (Gallese et al., 1996).

The idea of using x-schemas for execution, inference
and recognition might also help with another major
shortcoming of Bailey's verb learning paradigm. Bai-
ley's system learns only the most concrete embodiment
of a word like push. But there is a more general, ab-
stract meaning as well. This might be glossed as moving
an object away from a deictic center using force directed
through the object. Much of the cognitive linguistics lit-
erature is concerned with these general image-schematic
(Lako�, 1987) and force-dynamic (Talmy, 1988) seman-
tic representations. In our Bloom data, three of the four
verbs of action are the general forms: get, go and open,
but these might refer to speci�c actions; get might re-
fer to a pulling action representable directly in Figure
1. While it is still not known whether children develop
the general meanings early, the model must allow for the
possibility that they do.

Our current idea is to allow the embodied semantics
for early action words to have both speci�c and general
components. In this formulation, the Slide x-schema of
Figure 1 would be accompanied by a general x-schema
for achieving the goal of moving a physical object to a
desired place. In learning push the child might associate
the word with either the speci�c action, the general goal
achievement or both. Recent work by C. Johnson (1997)
suggests that early word learning might con
ate speci�c
and general meanings, such as view and know for see.
This early con
ation may serve as the basis for later
metaphorical mappings in a manner that �ts very well
with the NTL paradigm. By applying recognition to
these general x-schemas, we may have the basis for the

inference of the goals and intentions of other agents, a
crucial step much studied in AI.
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