CS-184: Computer Graphics

Lecture #1: Introduction, Overview, and Image Basics

Prof. James O'Brien University of California, Berkeley

V2009-F-01-1.0

1

Today

- Introduction and Course Overview
- \circ Assignments #1 and #2
- Digital Images

The Subject: Computer Graphics

- Computer Graphics:
 - Using computers to generate and display images
- Issues that arise:
 - Modeling
 - Rendering
 - Animation
 - Perception
 - Lots of details...

3

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - ∘ Design
 - Others...

From Star Wars Episode 1, Lucasfilm Ltd.

5

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

From Finding Nemo, Pixar Animation Studios

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - $\circ \ \mathsf{Design}$
 - Others...

From Halo 2, by Bungie Entertainment

7

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - Others...

From Star Wars:The Force Unleashed by Lucas Arts

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

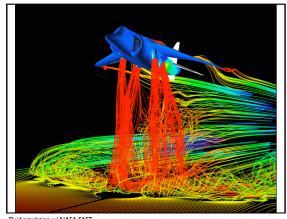
From America's Army

9

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

Image from CAE Inc.


- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

11

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

Fluid simulation w/ NASA FAST

Course Topics

- Image representation and manipulation
- 2D and 3D drawing algorithms
- Object representations
- Rendering
- Animation
- Interaction techniques

13

13

People

Prof. James O'Brien

Email: job@eecs.berkeley.edu Office hours: 4:00 - 4:30 Mon / Wed (priority to CS 184 students) 2:00 - 3:00 Fri Office location: 633 Soda Hall

T.A. Daniel Ritchie

Email: dcritchie@berkeley.edu Office hours: 4:00 - 5:00 Wed 3:00 - 4:00 Thur Office hours location: 751 Soda Hall

T.A. Leon Barrett

Email: leon@barrettnexus.com Office hours: TBA Office hours location:TBA

Send class related email to cs 184@imail.eecs.berkeley.edu

Contact Information

- Class web site:
 - http://inst.eecs.berkeley.edu/~cs184
 - Handouts assignments, etc. will be posted there
 - Lecture notes posted there (hopefully) before classes
- News group:
 - o ucb.class.cs 184
 - Server: news.csua.berkeley.edu
 - Username/password: usenet/gobears
 - Not reading newsgroup... bad idea
- Email addresses on previous page...

15

. .

Computing Resources

- Class accounts handed shortly
- Can also use CS Labs
 - Linux
 - Windows
 - Mac

Text Book

- Fundamentals of Computer Graphics by Peter Shirley
 - * Get the current version!
- Also handouts and other supplemental material will be provided
- See other books listed in course information handout

17

Grading

- Assignments: 40%
 - Mix of written and programing
 - Average I or 2 weeks to do them
- Final Project: 20%
 - Presentation: TBA prior to midterm
- Midterm: 20%
 - Wednesday, October 14, In class
- ∘ Final: 20%
 - Thursday, December 17 5:00-8:00pm
- Check now for conflicts!

Prerequisites

- You must know how to program C or C++
 - Big final project, several programing assignments
 - No hand holding
- Data structures (CS61B)
- Math: linear algebra, calc, trig

19

Waitlist

• Relax for now... there is lots of space.

Class Participation

- Reasons to participate
 - More fun for me and you
 - You learn more
 - \circ I won't give stupid little annoying quizzes in class
- How to participate
 - Ask questions
 - Make comments
- Stupid questions/comments
 - That's okay

21

Assignments #1 and #2

- ∘ Assignment #I
 - \circ Setup CS184 account and let us know who you are
 - Get very simple OpenGL program working
- Assignment #2
 - Tests math prerequisites

Academic Honesty

- If you use an external resource cite it clearly!
- Don't do things that would be considered dishonest... if in doubt ask.
- Cheating earns you:
 - An 'F' in the class and
 - Getting reported to the University
 - No exceptions.

23

Questions?

- Something that represents a pattern of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

25

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - o Sampled (pixel based)
 - Object based
 - Functional

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

27

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

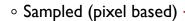
- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based) ·
 - ∘ Object based —
 - Functional

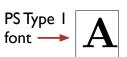
29

29

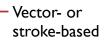
Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based -
 - Functional





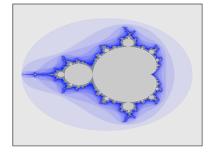
- Something that represents a patten of light that will be perceived by something
- Computer representations


Object based –

Functional

29

Images

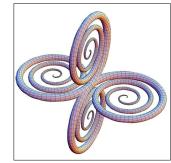

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

Well, this used to be in an object based representation...

Okan Arikan

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

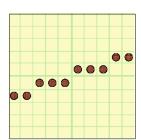
Mandelbrot Fractal Plot by Vincent Stahl


31

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

 $Function {\rightarrow} Polygons {\rightarrow} Pixels$


Think about making edits...

ed" by Sandor Kabai

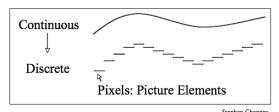
Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
 - 2D array of memory
 - \circ Pixels store different things
 - Intensity
 - RGB color
 - Depth
 - o Others...
 - May be mapped to special HW

33

Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
 - 2D array of memory
 - Pixels store different things
 - o Intensity (scalar value, e.g. float, int)
 - RGB color (vector value)
 - Depth
 - o Others...


0.25	0.5	0.25	0.5	0.2
1	0.25	0	0.25	1
0.25	0.5	0.25	0.5	0.2

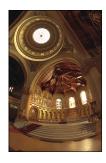
Stephen Chenne

May be mapped to special HW

Discretization

- Real world and "object" representations are continuous.
- Raster images have discrete pixel locations and discrete pixel values

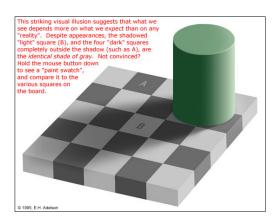
We will see problems from this soon...


35

High Dynamic Range Images

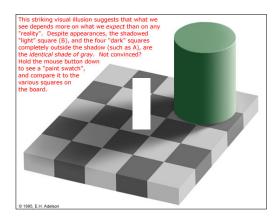
High Dynamic Range Images

- Dynamic range of the human eye >> range of standard monitors
- Eye adjusts as we look around



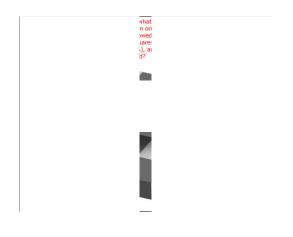
Paul Debevec and Jitenrda Malik

37


Perception

• The eye does not see intensity values...

Perception


 \circ The eye does not see intensity values...

39

Perception

• The eye does not see intensity values...

Perception

41

Storing Images

- Digital file formats
 - $\circ\,$ TIFF, JPEG, PNG, GIF, BMP, PPM, etc. ...
 - ∘ Compression (lossless and lossy)
 - Interlaced (e.g. NTSC television)
 - Tend to be complex... use libraries
- Mapping to memory