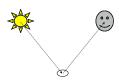
# CS-184: Computer Graphics

Lecture #3: Shading

Prof. James O'Brien University of California, Berkeley


V2009-F-03-

#### Today

- Local Illumination & Shading
- The BRDF
- Simple diffuse and specular approximations
- Shading interpolation: flat, Gouraud, Phong
- Some miscellaneous tricks

#### Local Shading

- Local: consider in isolation
- 1 light
- 1 surface
- The viewer
- Recall: lighting is linear
- Almost always...



#### Local Shading

- Local: consider in isolation
- 1 light
- 1 surface
- The viewer
- Recall: lighting is linear
- Almost always...



Counter example: photochromatic materials



# Local Shading

- Examples of non-local phenomena
- Shadows
- Reflections
- Refraction
- Indirect lighting

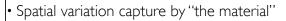
4

#### The BRDF

- The **B**i-directional **R**eflectance **D**istribution **F**unction
- Given
- Surface material

$$ho = 
ho( heta_V, heta_L)$$


Incoming light direction


$$= \rho(\textbf{v},\textbf{l},\textbf{n})$$

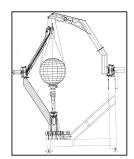
- Direction of viewer
- Orientation of surface
- Return:
- fraction of light that reaches the viewer
- We'll worry about physical units later...

#### The BRDF








- Frequency dependent
- Typically use separate RGB functions
- Does not work perfectly
- Better:

$$ho = 
ho( heta_V, heta_L, \lambda_{ ext{in}}, \lambda_{ ext{out}})$$

# Obtaining BRDFs

• Measure from real materials





Images from Marc Levoy

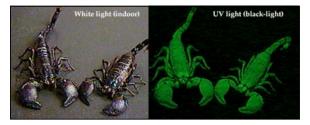
# Obtaining BRDFs

- Measure from real materials
- Computer simulation
- Simple model + complex geometry
- Derive model by analysis
- Make something up

8

# Beyond BRDFs

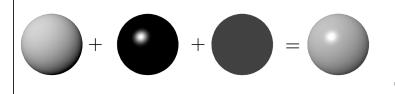
- The BRDF model does not capture everything
- e.g. Subsurface scattering (BSSRDF)




Images from Jensen et. al, SIGGRAPH 2001

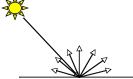


#### Beyond BRDFs


- The BRDF model does not capture everything
- e.g. Inter-frequency interactions



 $ho = 
ho( heta_{\it V}, heta_{\it L}, \lambda_{\scriptscriptstyle 
m in}, \lambda_{\scriptscriptstyle 
m out})$  This version would work....  $_{\scriptscriptstyle 
m in}$ 


# A Simple Model

- Approximate BRDF as sum of
- A diffuse component
- A specular component
- A "ambient" term

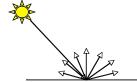


#### Diffuse Component

- Lambert's Law
- Intensity of reflected light proportional to cosine of angle between surface and incoming light direction
- Applies to "diffuse," "Lambertian," or "matte" surfaces
- Independent of viewing angle
- Use as a component of non-Lambertian surfaces






12

#### Diffuse Component

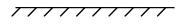
Comment about two-side lighting in text is wrong...

$$k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})$$

 $\max(k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}), 0)$ 



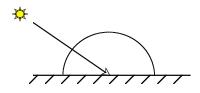



# Diffuse Component

• Plot light leaving in a given direction:



• Plot light leaving from each point on surface



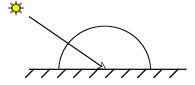



14

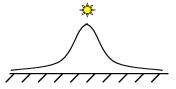
#### Diffuse Component

• Plot light leaving in a given direction:




• Plot light leaving from each point on surface

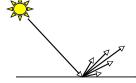





#### Diffuse Component

• Plot light leaving in a given direction:




• Plot light leaving from each point on surface



1.4

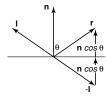
#### Specular Component

- Specular component is a mirror-like reflection
- Phong Illumination Model
  - A reasonable approximation for some surfaces
  - Fairly cheap to compute
- Depends on view direction





# Specular Component

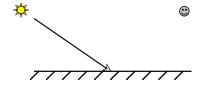

$$k_{s}I(\hat{\mathbf{r}}\cdot\hat{\mathbf{v}})^{p}$$

$$k_{s}I\max(\hat{\mathbf{r}}\cdot\hat{\mathbf{v}},0)^{p}$$

# Specular Component

• Computing the reflected direction

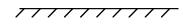
$$\hat{\mathbf{r}} = -\hat{\mathbf{l}} + 2(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$$




$$\hat{\mathbf{h}} = \frac{\mathbf{l} + \hat{\mathbf{v}}}{||\hat{\mathbf{l}} + \hat{\mathbf{v}}||}$$



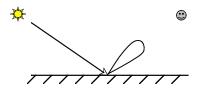
# Specular Component


• Plot light leaving in a given direction:



• Plot light leaving from each point on surface

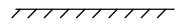



0



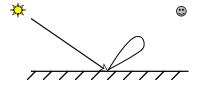
18

# Specular Component

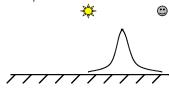

• Plot light leaving in a given direction:



• Plot light leaving from each point on surface



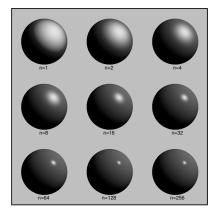

 $\odot$ 






• Plot light leaving in a given direction:




Plot light leaving from each point on surface



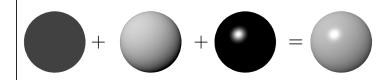
18

# Specular Component

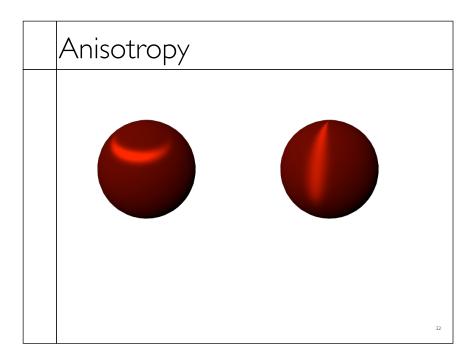
• Specular exponent sometimes called "roughness"

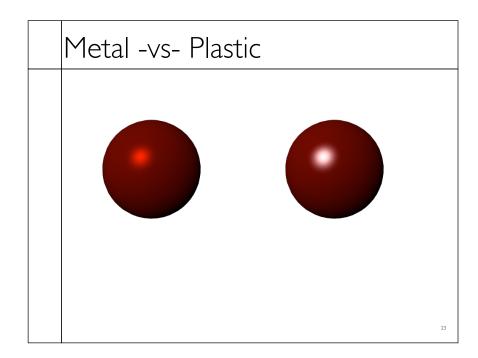


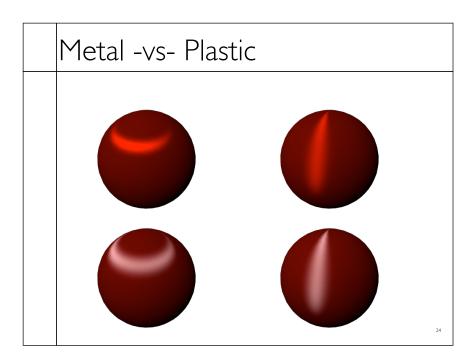
#### Ambient Term

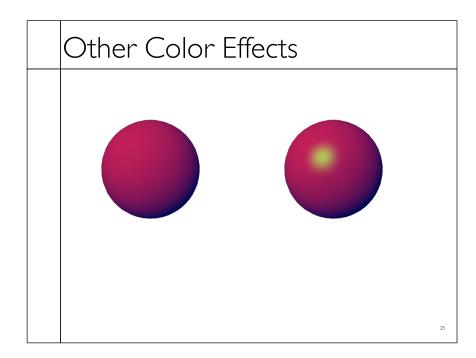

- Really, its a cheap hack
- Accounts for "ambient, omnidirectional light"
- Without it everything looks like it's in space



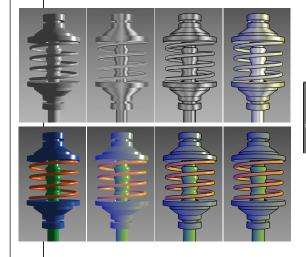

20

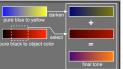

#### Summing the Parts


$$R = k_a I + k_d I \max(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}, 0) + k_s I \max(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}}, 0)^p$$




- ullet Recall that the  $k_{?}$  are by wavelength
  - RGB in practice
- Sum over all lights








# Other Color Effects





Images from Gooch et. al, 1998

#### Measured BRDFs





BRDFs for automotive paint

Images from Cornell University Program of Computer Graphics

#### Measured BRDFs





BRDFs for aerosol spray paint

Images from Cornell University Program of Computer Graphics

28

#### Measured BRDFs



BRDFs for house paint

Images from Cornell University Program of Computer Graphics

#### Measured BRDFs



BRDFs for lucite sheet

Images from Cornell University Program of Computer Graphics

30

# Details Beget Realism

• The "computer generated" look is often due to a lack of fine/subtle details... a lack of richness.

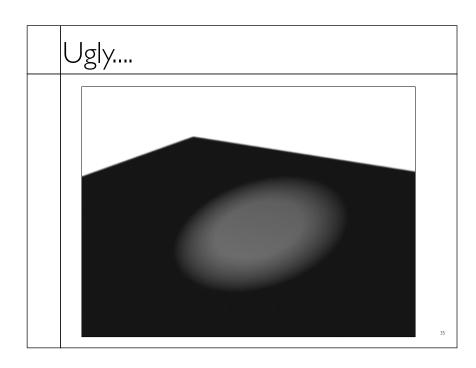


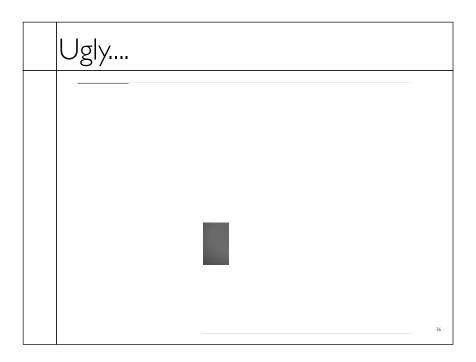
From bustledress.com

#### Direction -vs- Point Lights

- For a point light, the light direction changes over the surface
- For "distant" light, the direction is constant
- Similar for orthographic/perspective viewer

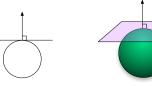




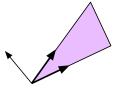


32

#### Falloff

- Physically correct:  $1/r^2$  light intensify falloff
- Tends to look bad (why?)
- Not used in practice
- ullet Sometimes compromise of 1/r used


# Spot and Other Lights Other calculations for useful effects Spot light Only light certain objects Negative lights etc.






#### Surface Normals

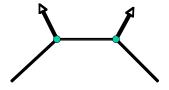
• The normal vector at a point on a surface is perpendicular to all surface tangent vectors



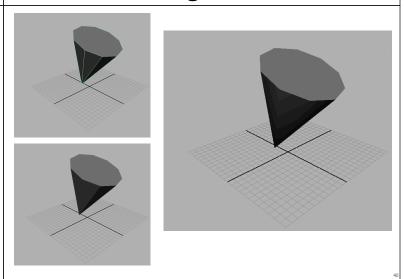
• For triangles normal given by right-handed cross product



#### Flat Shading


- Use constant normal for each triangle (polygon)
- Polygon objects don't look smooth
- Faceted appearance very noticeable, especially at specular highlights
- Recall mach bands...




38

#### Smooth Shading

- Compute "average" normal at vertices
- Interpolate across polygons
- Use threshold for "sharp" edges
- Vertex may have different normals for each face



# Smooth Shading



# Gouraud Shading

- Compute shading at each vertex
- Interpolate colors from vertices
- Pros: fast and easy, looks smooth
- Cons: terrible for specular reflections





Note: Gouraud was hardware rendered...

# Phong Shading • Compute shading at each pixel • Interpolate normals from vertices • Pros: looks smooth, better speculars • Cons: expensive

Note: Gouraud was hardware rendered...

Gouraud

Phong