CS-1 84: Computer Graphics

Lecture \#4:2DTransformations

Prof. James O'Brien
University of California, Berkeley
2009 F PO 10

| | Introduction |
| :--- | :--- | :--- |
| - Transformation: | |
| An operation that changes one configuration into another | |
| For images, shapes, etc.
 A geometric transformation maps positions that define the object to
 other positions
 Linear transformation means the transformation is defined by a linear
 function... which is what matrices are good for. | |

	Linear is Linear
- Composing two linear function is still linear	
- Transform polygon by transforming vertices	
$f(x)=a+b x \quad g(f)=c+d f$	
$g(x)=c+d f(x)=c+a d+b d x$	
$g(x)=a^{\prime}+b^{\prime} x$	

	Points in Space
- Represent point in space by vector in R^{n}	
• Relative to some origin!	
- Relative to some coordinate axes!	
- Later we'll add something extra...	

| Basic Transformations |
| :--- | :--- |
| - Basic transforms are: rotate, scale, and translate |
| Shear is a composite transformation! |

Linear Functions in 2D
$x^{\prime}=f(x, y)=c_{1}+c_{2} x+c_{3} y$
$y^{\prime}=f(x, y)=d_{1}+d_{2} x+d_{3} y$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]+\left[\begin{array}{l}M_{x x} M_{x y} \\ M_{y x} M_{y y}\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$
$\mathbf{x}^{\prime}=\mathbf{t}+\mathbf{M} \cdot \mathbf{x}$

	Rotations
- Rotations are positive counter-clockwise	
- Consistent w/ right-hand rule	
- Don't be different...	
- Note:	
• rotate by zero degrees give identity	
rotations are modulo 360 (or 2π)	

	Shears
	Shears are not really primitive transforms - Related to non-axis-aligned scales - More shortly.....

	Translation
	Translate This is the not-so-useful way: $\mathbf{p}^{\prime}=\mathbf{p}+\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$

Singular Value Decomposition

- For any matrix, A , we can write SVD:

$$
\mathbf{A}=\mathbf{Q S R}^{\top}
$$

where \mathbf{Q} and \mathbf{R} are orthonormal and \mathbf{S} is diagonal

- Can also write Polar Decomposition

$$
\mathbf{A}=\mathbf{Q R S R}^{\top}
$$

where \mathbf{Q} is still orthonormal not the same \mathbf{Q}

	Decomposing Matrices
	We can force \mathbf{Q} and \mathbf{R} to have Det=1 so they are rotations - Any matrix is now: - Rotation:Rotation:Scale:Rotation - See, shear is just a mix of rotations and scales

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A p}
$$

"Apply \mathbf{A} to \mathbf{p} and then apply \mathbf{B} to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathbf{B A p}+\mathbf{B} \mathbf{t}=\mathbf{C} \mathbf{p}+\mathbf{u}
$$

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A} \mathbf{p}
$$

"Apply \mathbf{A} to \mathbf{p} and then apply \mathbf{B} to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\{\mathbf{p}+\mathbf{B t}=\mathbf{C} \mathbf{p}+\mathbf{u}
$$

Homogeneous Translation
$\widetilde{\mathbf{p}}^{\prime}=\left[\begin{array}{lll\|}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right]$
$\widetilde{\mathbf{p}}^{\prime}=\widetilde{\mathbf{A}} \widetilde{\mathbf{p}}$
The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others
$\widetilde{\mathbf{A}}=\left[\begin{array}{crl}\mathbf{A} & 0 \\ 0 & 0 & 1\end{array}\right]$
Now everything looks the same... Hence the term "homogenized!"

	Rotate About Arb. Point
- Step 1:Translate point to origin	
- Step 2: Rotate as desired	
Step 3: Put back where it was	Translate (-C) Rotate ($\theta)$ Translate (c)
$\widetilde{\mathbf{p}}^{\prime}=(-\mathbf{T}) \mathbf{R T \mathbf { T }}=\mathbf{A} \widetilde{\mathbf{p}}$	

Rotate About Arb. Point	
- Step I:Translate point to origin - Step 2: Rotate as desired - Step 3: Put back where it was	

Scale About Arb. Axis
- Step :TTranslate axis to orign
Step 2:Rotate axis to olign with one of the coordinate
axes

Scale About Arb. Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4\&5: Undo 2 and I (reverse order)

	Matrix Inverses
	- In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:	
- Translation: negate t_{x} and t_{y}	
- Rotation: transpose	
- Scale: invert diagonal (axis-aligned scales)	
- Others:	
- Invert matrix	
- Invert sVD matrices	

| Oint Vectors / Direction |
| :--- | :--- |
| - Points in space have a 1 for the " w " coordinate |
| - What should we have for $\mathbf{a}-\mathbf{b}$? |
| • $w=0$ |
| - Directions not the same as positions |
| - Difference of positions is a direction |
| - Position + direction is a position |
| • Direction + direction is a direction |
| - Position + position is nonsense |

