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Today

• Windowing and Viewing Transformations
• Windows and viewports
• Orthographic projection
• Perspective projection
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Screen Space
• Monitor has some number of pixels

• e.g. 1024 x 768

• Some sub-region used for given program
• You call it a window
• Let’s call it a viewport instead

[0,0]

[1024,768]

[60,350]

[690,705]

[0,0]

[1024,768]
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Screen Space
• May not really be a “screen”

• Image file
• Printer
• Other

• Little pixel details

• Sometimes odd
• Upside down
• Hexagonal

From Shirley textbook.
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Screen Space

• Viewport is somewhere on screen
• You probably don’t care where
• Window System likely manages this detail
• Sometimes you care exactly where

• Viewport has a size in pixels
• Sometimes you care (images, text, etc.)
• Sometimes you don’t (using high-level library)

Screen Space
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Integer Pixel Addresses

i=3

j=5

 10 × 10  Image Resolution-0.5,-0.5

nx-0.5,ny-0.5



Screen Space

7

Float Pixel Coordinates

u= 0.35 = (i + 0.5)/nx 0,0

1,1

v= 0.55 = (j + 0.5)/ny 
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Canonical View Space
• Canonical view region

• 2D:  [-1,-1] to [+1,+1]
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Canonical View Space

• Canonical view region

• 2D:  [-1,-1] to [+1,+1]
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From Shirley textbook.
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Canonical View Space

• Canonical view region

• 2D:  [-1,-1] to [+1,+1]
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Canonical View Space
• Canonical view region

• 2D:  [-1,-1] to [+1,+1]
• Define arbitrary window and define objects

• Transform window to canonical region

• Do other things (we’ll see clipping latter)

• Transform canonical to screen space

• Draw it.
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Canonical View Space

World Coordinates Canonical Screen Space

(Meters) (Pixels)

Note distortion issues...
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Projection

• Process of going from 3D to 2D

• Studies throughout history (e.g. painters)

• Different types of projection
• Linear

• Orthographic
• Perspective

• Nonlinear
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Projection

• Process of going from 3D to 2D

• Studies throughout history (e.g. painters)

• Different types of projection
• Linear

• Orthographic
• Perspective

• Nonlinear

Many special cases in books just 
one of these two...}
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Projection

• Process of going from 3D to 2D

• Studies throughout history (e.g. painters)

• Different types of projection
• Linear

• Orthographic
• Perspective

• Nonlinear

Orthographic is special case of
perspective...

Many special cases in books just 
one of these two...}

Perspective Projections

13
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Linear Projection
• Projection onto a planar surface

• Projection directions either
• Converge to a point
• Are parallel (converge at infinity)
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Linear Projection
• A 2D view

OrthographicPerspective
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Linear Projection

Orthographic Perspective
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Linear Projection

Orthographic Perspective
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OrthographicPerspective

Note how different things can be seen

Parallel lines “meet” at infinity

Linear Projection
• A 2D view
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Orthographic Projection

• No foreshortening

• Parallel lines stay parallel

• Poor depth cues



Orthographic Projection
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Canonical View Space
• Canonical view region

• 3D:  [-1,-1,-1] to [+1,+1,+1]

• Assume looking down -Z axis
• Recall that “Z is in your face”

[1,1,1] [-1,-1,-1]

-Z
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Orthographic Projection

• Convert arbitrary view volume to canonical

[1,1,1] [-1,-1,-1]

-Z
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Orthographic Projection

View vector

Up vector

Right = view X up 

Origin

Center

near,top,right

far,bottom,left

*Assume up is perpendicular to view.
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Orthographic Projection
• Step 1: translate center to origin
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Orthographic Projection
• Step 1: translate center to origin

• Step 2: rotate view to -Z and up to +Y
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Orthographic Projection
• Step 1: translate center to origin

• Step 2: rotate view to -Z and up to +Y
• Step 3: center view volume

27

Orthographic Projection
• Step 1: translate center to origin

• Step 2: rotate view to -Z and up to +Y
• Step 3: center view volume
• Step 4: scale to canonical size



28

Orthographic Projection
• Step 1: translate center to origin

• Step 2: rotate view to -Z and up to +Y
• Step 3: center view volume
• Step 4: scale to canonical size

M= S ·T2 ·R ·T1
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Orthographic Projection
• Step 1: translate center to origin

• Step 2: rotate view to -Z and up to +Y
• Step 3: center view volume
• Step 4: scale to canonical size

M= S ·T2 ·R ·T1
M=Mo ·Mv
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Perspective Projection

• Foreshortening: further objects appear smaller

• Some parallel line stay parallel, most don’t

• Lines still look like lines

• Z ordering preserved (where we care)
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Perspective Projection

Pinhole a.k.a center of projection
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Perspective Projection

Foreshortening: distant objects appear smaller
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Perspective Projection

• Vanishing points
• Depend on the scene
• Not intrinsic to camera

“One point perspective”
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Perspective Projection

• Vanishing points
• Depend on the scene
• Nor intrinsic to camera

“Two point perspective”
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Perspective Projection

• Vanishing points
• Depend on the scene
• Not intrinsic to camera

“Three point perspective”
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Perspective Projection

u

v
n

View Frustum
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Perspective Projection

View
Up

Distance to image plane
i

Y

-Z

Top
t

Bottom
b

Near
n

Far
f

Center
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Perspective Projection
• Step 1: Translate center to origin

Y

-Z
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Perspective Projection
• Step 1: Translate center to origin

• Step 2: Rotate view to -Z, up to +Y

Y

-Z
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Perspective Projection
• Step 1: Translate center to origin

• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis

Y

-Z
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Perspective Projection
• Step 1: Translate center to origin

• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective

-Z
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Perspective Projection
• Step 1: Translate center to origin

• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
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Perspective Projection

• Step 4: Perspective
• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f
• Points at z=0 goto z=±∞
• Points at z=-∞ goto z=-(i+f)

• x and y values divided by -z/i

• Straight lines stay straight
• Depth ordering preserved in [-i,-f ]

• Movement along lines distorted

-Z
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Perspective Projection

• Step 4: Perspective
• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f
• Points at z=0 goto z=±∞
• Points at z=-∞ goto z=-(i+f)

• x and y values divided by -z/i

• Straight lines stay straight
• Depth ordering preserved in [-i,-f ]

• Movement along lines distorted
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Perspective Projection

WRONG!
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Perspective Projection

ẑ

“Eye” plane

Top

Near Far
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Perspective Projection

ẑ

Visualizing division of x and y but not z
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Perspective Projection

ẑ

Motion in x,y
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Perspective Projection

ẑ

Note that points on near plane fixed
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Perspective Projection

ẑ

Recall that points on far plane will
stay there...
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Perspective Projection

ẑ

When we also divide z points must
remain on straight lines
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Perspective Projection

ẑ

Lines extend outside view volume
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Perspective Projection

ẑ

Motion in z
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Perspective Projection

ẑ

Motion in z

−∞
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Perspective Projection

ẑ

Motion in z

−∞
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Perspective Projection

ẑ

Total motion
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Perspective Projection
• Step 1: Translate center to orange

• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
• Step 5: center view volume
• Step 6: scale to canonical size

-Z
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Perspective Projection
• Step 1: Translate center to orange

• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
• Step 5: center view volume
• Step 6: scale to canonical size

-ZM=Mo ·Mp ·Mv

Mo

Mp

Mv}

}

}
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Perspective Projection

• There are other ways to set up the projection matrix

• View plane at z=0 zero
• Looking down another axis
• etc...

• Functionally equivalent
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r(t) = p+ t d

Vanishing Points
• Consider a ray:

dp
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Vanishing Points
• Ignore Z part of matrix 

• X and Y will give location in image plane

• Assume image plane at z=-i
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Vanishing Points
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Vanishing Points
• Assume 

dz =−1
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Vanishing Points

• All lines in direction d converge to same point in the image 
plane -- the vanishing point

• Every point in plane is a v.p. for some set of lines

• Lines parallel to image plane (         ) vanish at infinity
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What’s a horizon?



Perspective Tricks
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Right Looks Wrong (Sometimes)
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Correction of Geometric Perceptual Distortions in Pictures.

Denis Zorin, Alan H. Barr

California Institute of Technology, Pasadena, CA 91125

Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.
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Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.
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settings of the parameters we can minimize the overall distortion of
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posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
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dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
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From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995
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From WIRED Magazine

Strangeness
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The Ambassadors
by Hans Holbein the Younger



Strangeness
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The Ambassadors
by Hans Holbein the Younger
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Ray Picking
• Pick object by picking point on screen

• Compute ray from pixel coordinates.
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Ray Picking
• Transform from World to Screen is:

• Inverse:

• What Z value?
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r(t) = aw+ t(bw−aw) bs = [sx,sy,− f ]

as = [sx,sy,−i]

Ray Picking

• Recall that:
• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f

r(t) = p+ t d

Depends on screen details, YMMV
General idea should translate...
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Depth Distortion
• Recall depth distortion from perspective

• Interpolating in screen space different than in world
• Ok, for shading (mostly)
• Bad for texture

ScreenWorld

Half way in screen space

Half way in world 
space

Depth Distortion
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42

P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4
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P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4

X =
�

i

Sibi Q =
�

i

Piai

We know the     ,      , and      ,  but not 
the     .

Si Pi bi ai

Depth Distortion
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P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4

X =
�

i

Sibi Q =
�

i

Piai

X = Q/h =




�

i

Piai



 /




�

j

hjaj







�

i

Sibi =




�

i

Piai



 /




�

j

hjaj





Depth Distortion
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P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4

X =
�

i

Sibi Q =
�

i

Piai

�

i

Pibi/hi =




�

i

Piai



 /




�

j

hjaj





Depth Distortion
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P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4

X =
�

i

Sibi Q =
�

i

Piai



�

i

Pibi/hi =




�

i

Piai



 /




�

j

hjaj





Depth Distortion
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Independent of given vertex
locations.

bi/hi = ai/




�

j

hjaj



 ∀i

Depth Distortion
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Linear equations in the     .

bi/hi = ai/




�

j

hjaj



 ∀i




�

j

hjaj



 bi/hi − ai = 0 ∀iai
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


�

j

hjaj



 bi/hi − ai = 0 ∀iai

�

i

ai =
�

i

bi = 1
Not invertible so add some
extra constraints.

Linear equations in the     .

Depth Distortion
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For a line: a1 = h2bi/(b1h2 + h1b2)

a1 = h2h3b1/(h2h3b1 + h1h3b2 + h1h2b3)For a triangle:

Obvious Permutations for other coefficients.


