CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O'Brien University of California, Berkeley

V2009-F-08-1.0

Today

- Windowing and Viewing Transformations
 - Windows and viewports
 - Orthographic projection
 - Perspective projection

2

Screen Space

- Monitor has some number of pixels
 - e.g. 1024 x 768
- Some sub-region used for given program
- You call it a window
- Let's call it a viewport instead

[1024,768]

[1024, 768]

[690, 705]

[60, 350]

[0,0]

[0,0]

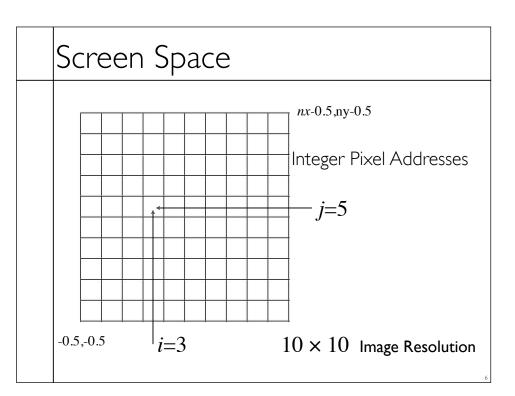
Screen Space

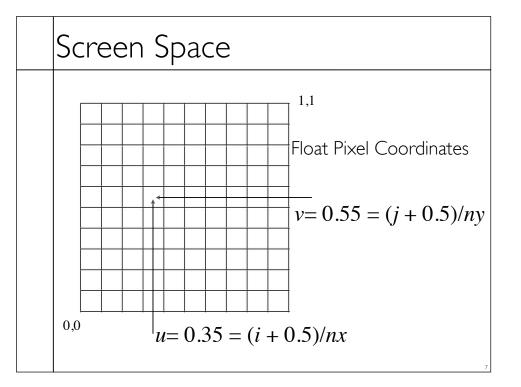
- May not really be a "screen"
 - Image file
 - Printer
 - Other
- Little pixel details
- Sometimes odd
- Upside down
- Hexagonal

From Shirley textbook.

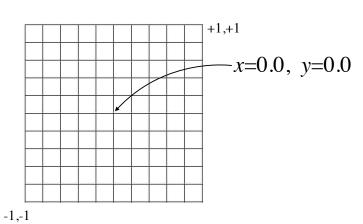
Screen Space

- Viewport is somewhere on screen
 - You probably don't care where
 - Window System likely manages this detail
 - Sometimes you care exactly where
- Viewport has a size in pixels
 - Sometimes you care (images, text, etc.)
 - Sometimes you don't (using high-level library)



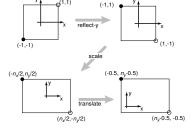


- Canonical view region
- 2D: [-1,-1] to [+1,+1]



Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]



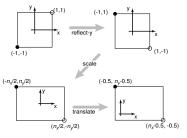
From Shirley textbook. (Image coordinates are up-side-down.)

$$\begin{bmatrix} i \\ j \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Remove minus for right-side-up

Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]



From Shirley textbook, (Image coordinates are up-side-down.)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Remove minus for right-side-up

Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]
- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

10

Canonical View Space World Coordinates Canonical Screen Space (Meters) (Pixels) Note distortion issues...

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear
 - Orthographic
 - Perspective
- Nonlinear

12

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear
 - Orthographic
 - Perspective
- Nonlinear

Many special cases in books just one of these two...

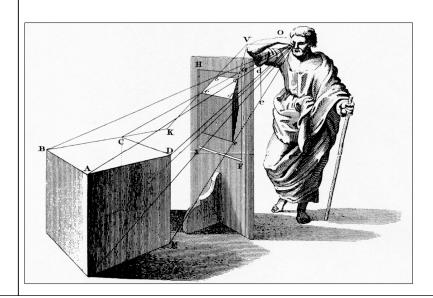
Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear
 - Orthographic
 - Perspective
- Nonlinear

Many special cases in books just one of these two...

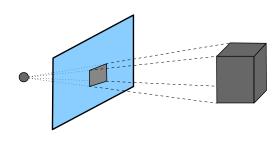
Orthographic is special case of perspective...

- 1

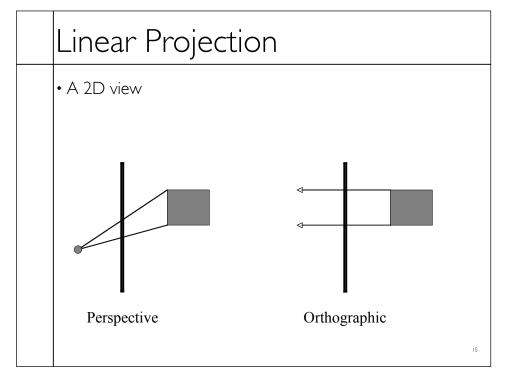


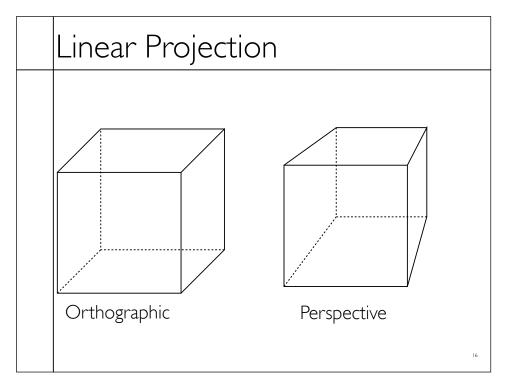
Linear Projection

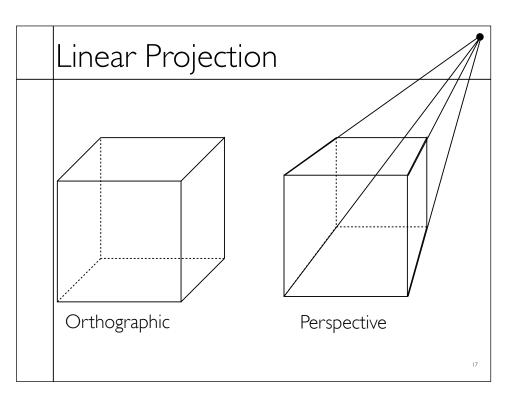
- Projection onto a <u>planar surface</u>
- Projection directions either
 - Converge to a point
- Are parallel (converge at infinity)

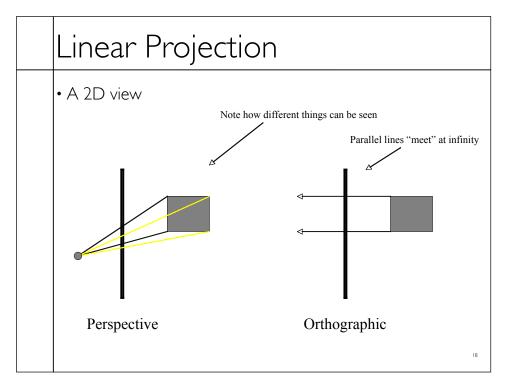


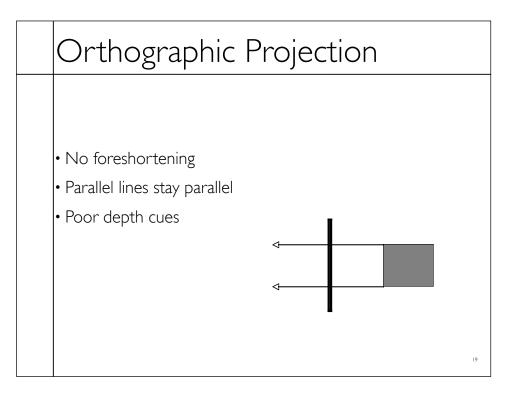
17

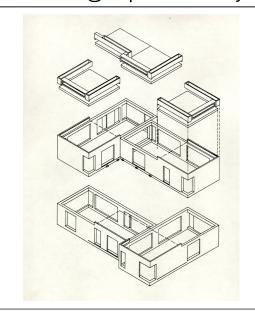






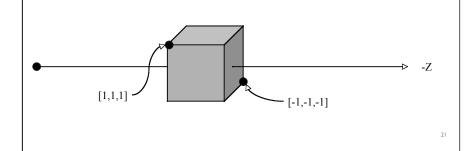




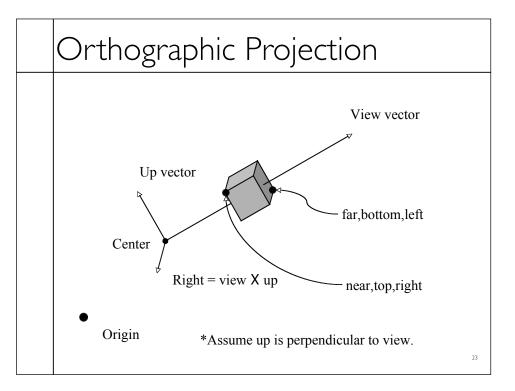


Canonical View Space

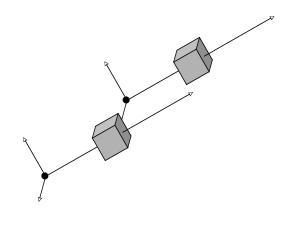
- Canonical view region
 - 3D: [-1,-1,-1] to [+1,+1,+1]
- Assume looking down -Z axis
 - Recall that "Z is in your face"



• Convert arbitrary view volume to canonical

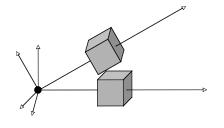


• Step 1: translate center to origin

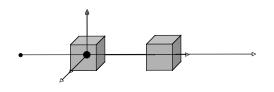


Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate \emph{view} to - \mathbf{Z} and \emph{up} to + \mathbf{Y}



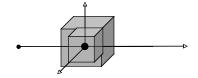
- Step 1: translate center to origin
- Step 2: rotate *view* to $-\mathbf{Z}$ and up to $+\mathbf{Y}$
- Step 3: center view volume



26

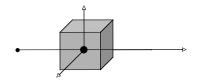
Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate *view* to $-\mathbf{Z}$ and up to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size



- Step 1: translate center to origin
- Step 2: rotate view to - ${\bf Z}$ and up to + ${\bf Y}$
- Step 3: center view volume
- Step 4: scale to canonical size

$$\mathbf{M} = \mathbf{S} \cdot \mathbf{T}_2 \cdot \mathbf{R} \cdot \mathbf{T}_1$$

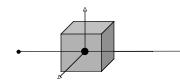


28

Orthographic Projection

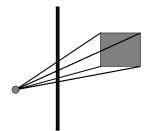
- Step 1: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size

$$\mathbf{M} = \mathbf{S} \cdot \mathbf{T}_2 \cdot \mathbf{R} \cdot \mathbf{T}_1$$
$$\mathbf{M} = \mathbf{M}_o \cdot \mathbf{M}_v$$



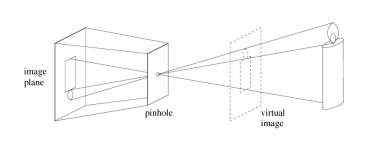
28

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- ullet ullet ordering preserved (where we care)

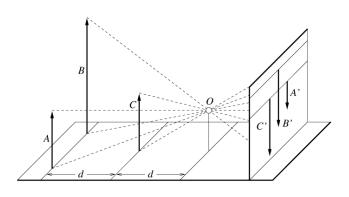


29

Perspective Projection



Pinhole a.k.a center of projection

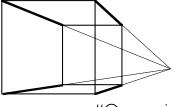


Foreshortening: distant objects appear smaller

31

Perspective Projection

- Vanishing points
 - Depend on the scene
- Not intrinsic to camera

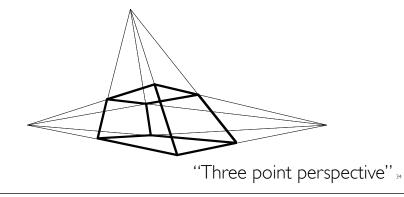


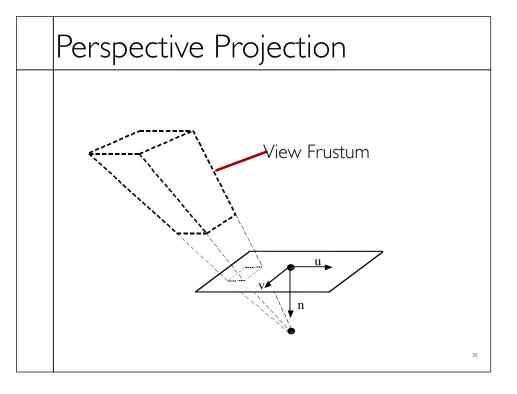
"One point perspective" 32

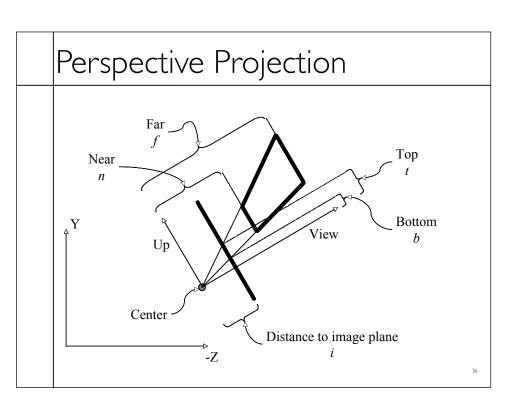
- Vanishing points
- Depend on the scene
- Nor intrinsic to camera

"Two point perspective" 33

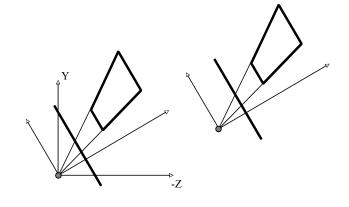
- Vanishing points
 - Depend on the scene
- Not intrinsic to camera







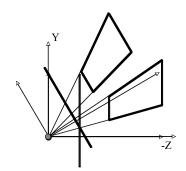
• Step 1:Translate *center* to origin



37

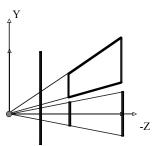
Perspective Projection

- Step 1:Translate *center* to origin
- Step 2: Rotate \emph{view} to $\emph{-}\mathbf{Z}, \emph{up}$ to $\emph{+}\mathbf{Y}$



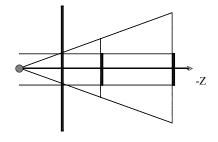
8

- Step 1:Translate *center* to origin
- Step 2: Rotate \emph{view} to $\emph{-}\mathbf{Z}$, \emph{up} to $\emph{+}\mathbf{Y}$
- Step 3: Shear center-line to **-Z** axis

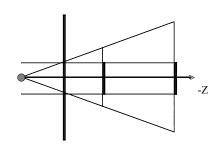


39

- Step 1:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to **-Z** axis
- Step 4: Perspective



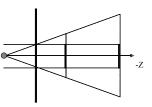
- Step 1:Translate center to origin
- Step 2: Rotate view to $-\mathbf{Z}$, up to $+\mathbf{Y}$
- Step 3: Shear center-line to **-Z** axis
- Step 4: Perspective



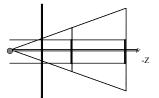
1	0	0	0]
0	1	0 $i + f$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
0	0	$\frac{i+f}{i}$	f
0	0	$\frac{-1}{i}$	0

4

- Step 4: Perspective
- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f
- Points at z=0 goto $z=\pm\infty$
- Points at $z=-\infty$ goto z=-(i+f)
- x and y values divided by -z/i
- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted

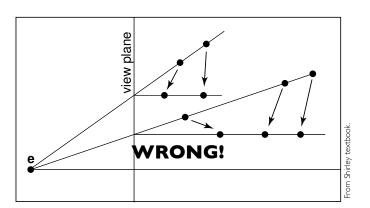


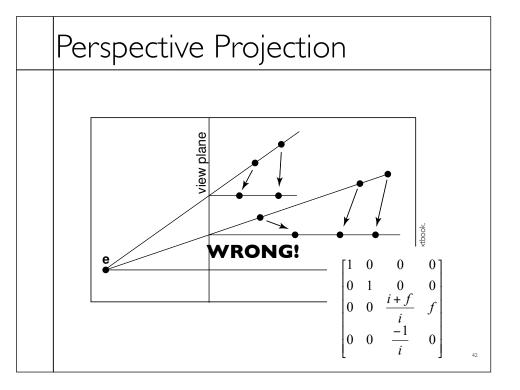
- Step 4: Perspective
 - Points at z=-i stay at z=-i
 - Points at z=-f stay at z=-f
 - Points at z=0 goto $z=\pm\infty$
 - Points at $z=-\infty$ goto z=-(i+f)
 - x and y values divided by -z/i
 - Straight lines stay straight
 - ullet Depth ordering preserved in [-i,-f]
 - Movement along lines distorted

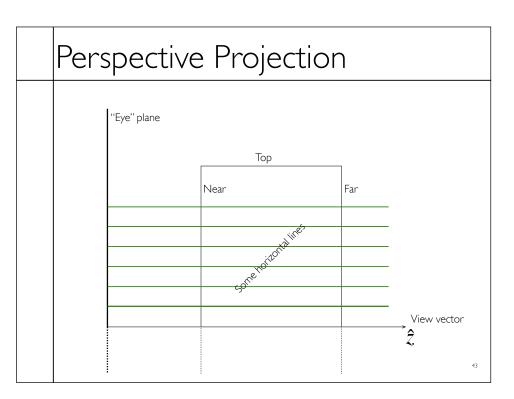


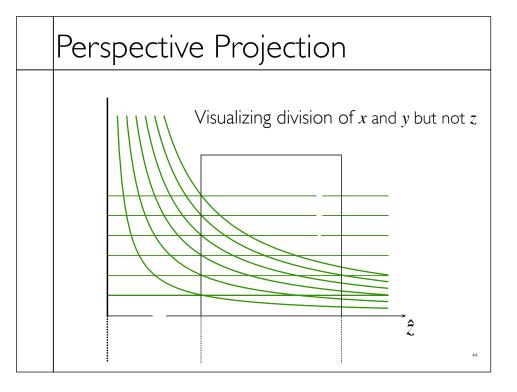
[1	0	0	0]
0	1	0 $i+f$	0
0	0	$\frac{i+f}{i}$	f
0	0	$\frac{-1}{i}$	0

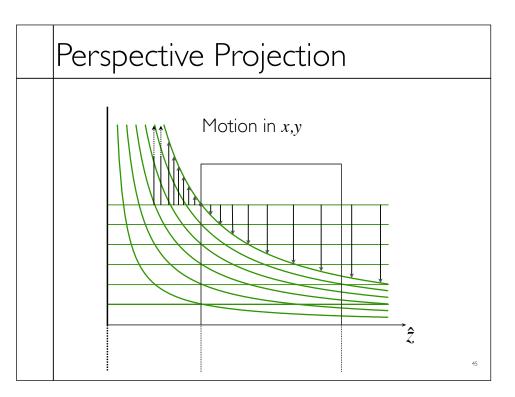
-

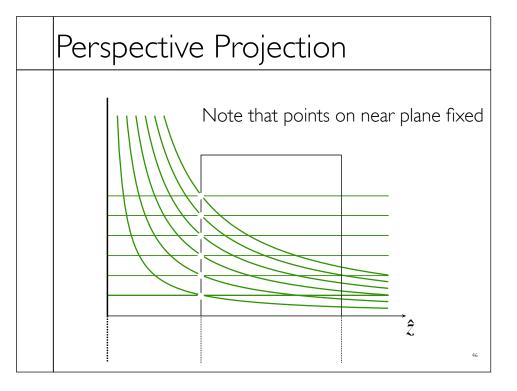


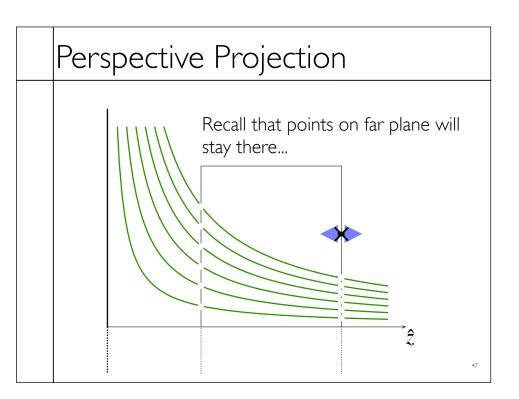


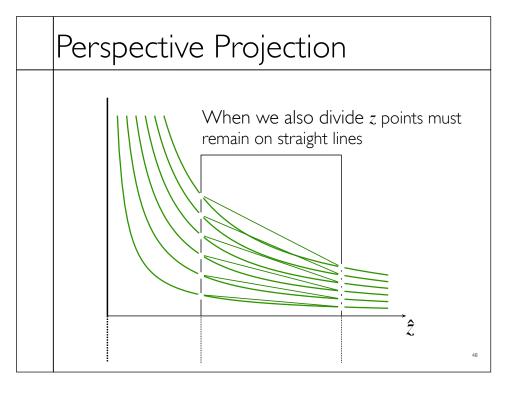


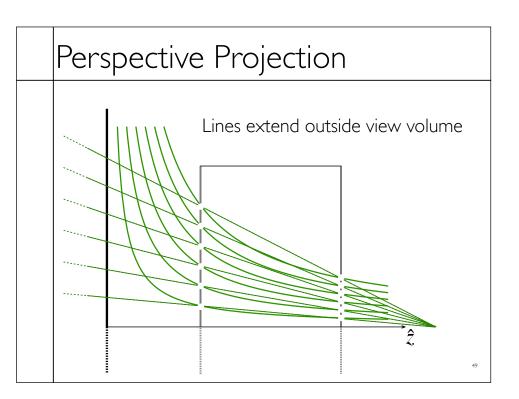


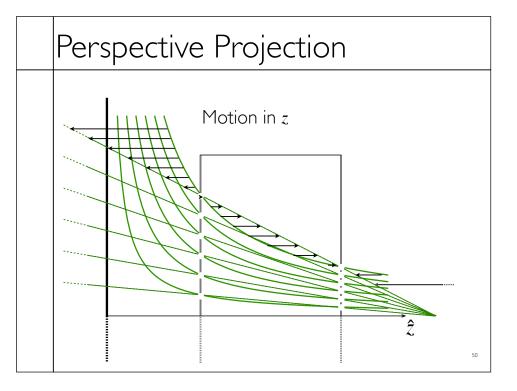


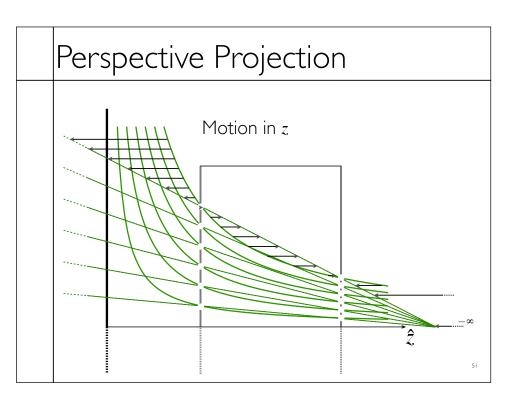


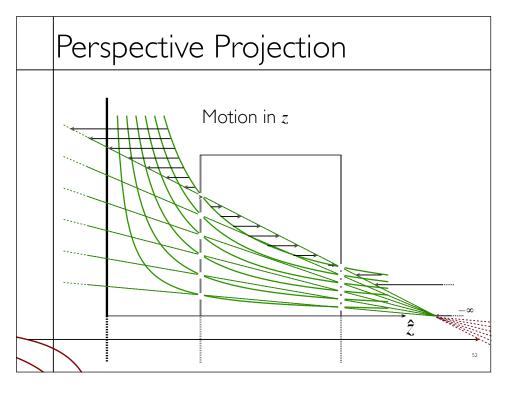


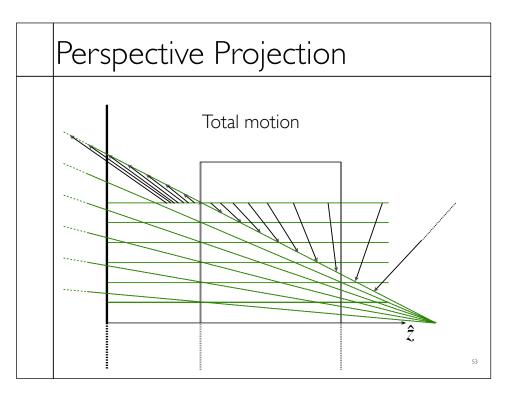




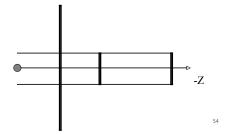








- Step 1:Translate *center* to orange
- Step 2: Rotate view to $-\mathbf{Z}$, up to $+\mathbf{Y}$
- Step 3: Shear center-line to **-Z** axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size



Perspective Projection

- Step 1:Translate *center* to orange
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

$$\mathbf{M} = \mathbf{M}_o \cdot \mathbf{M}_p \cdot \mathbf{M}_v$$

 M_{ν}

 M_p

 M_o

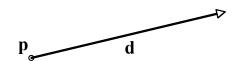
- There are other ways to set up the projection matrix
 - View plane at z=0 zero
 - Looking down another axis
- etc...
- Functionally equivalent

56

Vanishing Points

• Consider a ray:

$$\mathbf{r}(t) = \mathbf{p} + t \, \mathbf{d}$$



Vanishing Points

- Ignore **Z** part of matrix
- ullet ${f X}$ and ${f Y}$ will give location in image plane
- Assume image plane at z=-i

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \text{whatever} \\ 0 & 0 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

58

Vanishing Points

$$\begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x / z \\ -y / z \end{bmatrix}$$

9

Vanishing Points

• Assume

$$d_z = -1$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix} = \begin{bmatrix} \frac{p_x + td_x}{-p_z + t} \\ \frac{p_y + td_y}{-p_z + t} \end{bmatrix}$$

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

60

Vanishing Points

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

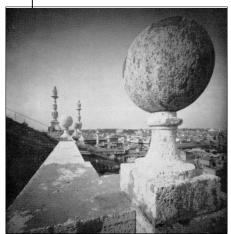
- All lines in direction **d** converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- Lines parallel to image plane ($d_z = 0$ vanish at infinity

What's a horizon?

Perspective Tricks

62

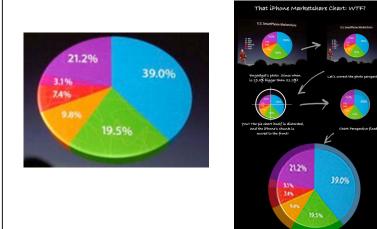
Right Looks Wrong (Sometimes)



From Conjection of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995

3

Right Looks Wrong (Sometimes)



Strangeness

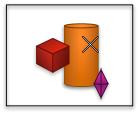
From WIRED Magazine

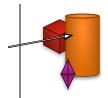
The Ambassadors by Hans Holbein the Younger

Strangeness The Ambassadors by Hans Holbein the Younger

Ray Picking

• Pick object by picking point on screen





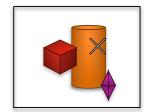
• Compute ray from pixel coordinates.

Ray Picking

• Transform from World to Screen is:

• Inverse:
$$\begin{vmatrix} I_x \\ I_y \\ I_z \\ I_w \end{vmatrix} = \mathbf{M} \begin{vmatrix} W_x \\ W_y \\ W_z \\ W_w \end{vmatrix}$$

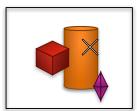
• What **Z** value?
$$\begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix}$$



Ray Picking

- Recall that:
 - Points at z=-i stay at z=-i
 - Points at z=-f stay at z=-f

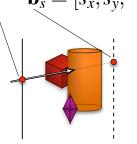
$$\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}$$
 $\mathbf{r}(t) = \mathbf{a}_w + t(\mathbf{b}_w - \mathbf{a}_w)$



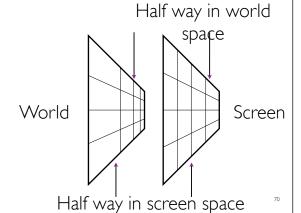
 $\mathbf{a}_{s}=[s_{x},s_{y},-i]$ $\mathbf{b}_{s} = [s_{x}, s_{y}, -f]$

Depends on screen details, YMMV

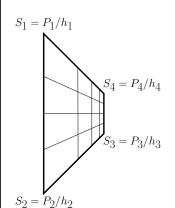
General idea should translate...

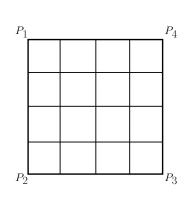


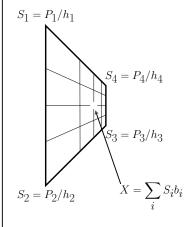
- Recall depth distortion from perspective
 - Interpolating in screen space different than in world
 - Ok, for shading (mostly)
 - Bad for texture



Depth Distortion







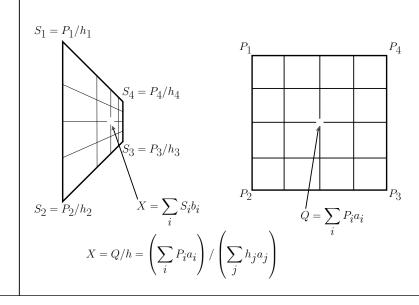
 $P_1 \qquad P_4$ $P_2 \qquad Q = \sum_{i} P_i a_i$

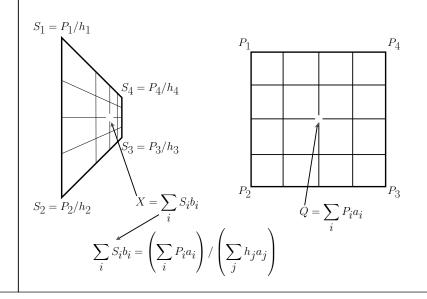
We know the $\sum_{S_i} P_i$, and the .

, but not_{a_i}

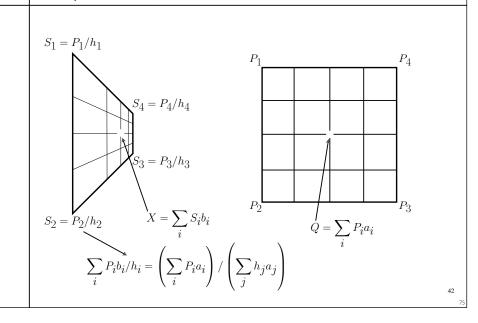
42

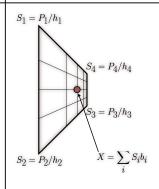
Depth Distortion

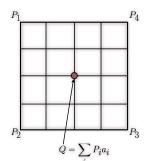




Depth Distortion





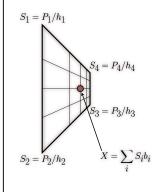


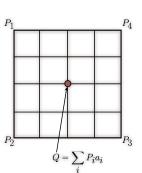
$$\sum_i P_i b_i / h_i = \left(\sum_i P_i a_i\right) / \left(\sum_j h_j a_j\right)$$

Independent of given vertex locations.

$$b_i/h_i = a_i/\left(\sum_j h_j a_j\right) \quad \forall i$$

Depth Distortion

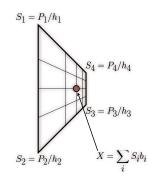


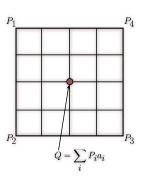


$$b_i/h_i = a_i/\left(\sum_j h_j a_j\right) \quad \forall i$$

Linear equations in the a_i .

$$\left(\sum_{j}h_{j}a_{j}\right)b_{i}/h_{i}-a_{i}=0\quad\forall i$$





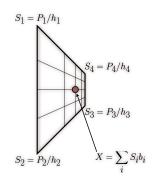
Linear equations in the $\,a_i\,$.

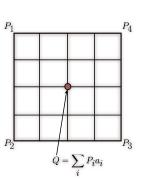
$$\left(\sum_{j} h_j a_j\right) b_i / h_i - a_i = 0 \quad \forall i$$

Not invertible so add some extra constraints.

$$\sum_{i} a_i = \sum_{i} b_i = 1$$

Depth Distortion





For a line: $a_1 = h$

$$a_1 = h_2 b_i / (b_1 h_2 + h_1 b_2)$$

For a triangle: $a_1 = h_2 h_3 b_1 / (h_2 h_3 b_1 + h_1 h_3 b_2 + h_1 h_2 b_3)$

Obvious Permutations for other coefficients.