CS-1 84: Computer Graphics

Lecture \#|6: Global Illumination

Prof. James O'Brien
University of California, Berkeley
vanase: 1410

	Today
- The Rendering Equation	
- Radiosity Method	
- Photon Mapping	
- Ambient Occlusion	

Sunday, November 8, 2009

Sunday, November 8, 2009

Sunday, November 8, 2009

The Rendering Equation
$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

The Rendering Equation
$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

The Rendering Equation

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

The Rendering Equation

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

The Rendering Equation

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

The Rendering Equation

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

The Rendering Equation

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

	Radiosity
- Assume all materials are perfectly Lambertian (diffuse only,	
no specularities)	
- Removes all dependance on directions	
- Reduces dimensionality of lightfield	
- Allows a FEM solution (break up into chunks)	
- Can also relax assumption slightly...	

Sunday, November 8, 2009

Assume Lambertian

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

$$
L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E_{x^{\prime}}+\int_{S} \rho_{x^{\prime}} L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]
$$

Assume Lambertian

$L_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[E\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\int_{S} \rho_{x^{\prime}}\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}\right]$

Sunday, November 8, 2009

Sunday, November 8, 2009

Sunday, November 8, 2009

Sunday, November 8, 2009

Rewrite in Terms of Patches

$$
H_{x^{\prime}}=E_{x^{\prime}}+\rho_{x^{\prime}} \int_{S} \delta\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \frac{H_{x^{\prime \prime}}}{2 \pi} \frac{\cos \left(\theta^{\prime}\right) \cos \left(\theta^{\prime \prime}\right)}{\left\|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime \prime}
$$

$$
H_{i}=E_{i}+\rho_{i} \sum_{j} H
$$

Radiosity Method

- Given the E_{i} and ρ_{i}
- First compute $F_{i j}$
- Then solve $H_{i}=E_{i}+\rho_{i} \sum_{j} H_{j} F_{i j}, l \begin{aligned} & \mathbf{h}=\mathbf{e}+\mathbf{A h} \\ & (\mathbf{I}-\mathbf{A}) \mathbf{h}=\mathbf{e}\end{aligned}$
- Comments:
- The matrix \mathbf{A} is typically very large
- It is also sparse (why?)
- Should be solved with an iterative method
- e.g.: Jacobi or Gauss-Seidel
- Solution is view independent

Sunday, November 8, 2009

Radiosity Method

- Given the light emitted and surface properties
- First compute $F_{i j}$, form factors between patches
- Then solve a linear system to balance energy between all patches
- Comments:
- The system is very large
- It is also sparse (why?)
- Should be solved with an iterative method
- e.g.: Jacobi or Gauss-Seidel
- Solution is view independent

Sunday, November 8, 2009

Sunday, November 8, 2009

	Other Things
	Each patch will have a constant color • Smooth solution (e.g. average to vertices) - No specular reflection - Add Phong specular term or raytraced specular reflection - Grid artifacts • Be clever with grid....

Sunday, November 8, 2009

Sunday, November 8, 2009

	Computing Form Factors
Form factors have a geometric meaning	
"Hemicube" algorithm uses reguar scan conversion	

	Computing Form Factors
- Form factors have a geometric meaning	
- "Hemicube" algorithm uses regular scan conversion	
- Also computed by ray-based sampling	
- In practice, computing form factors is the	
bottleneck	

Sunday, November 8, 2009

	Photon Mapping
	- Lights cast "photons" into environment - Cast in random directions - Trace into environment - Store records at intersections

Sunday, November 8, 2009

Comparison

Ray Tracing

Ray Tracing w/ Photon Map

Catherine Bendebury and Jonathan Michaels
CS 184 Spring 2005

Sunday, November 8, 2009

| Photon Mapping | |
| :--- | :--- | :--- |
| | |
| Raw photons | |
| Note: | |
| Noisy | |
| Sparse | |

Sunday, November 8, 2009

Sunday, November 8, 2009

	Photon Mapping	
	Final Image	
	Note: Not noisy Nice lighting Reflections May still be biased	
Final gather often		
bottleneck...		

	Ambient Occlusion
- A "hack" to create more realistic ambient illumination	
cheaply	
- Assume light from everywhere is partially blocked by local	
objects	
- At a point on the surface cast rays at random	
- Ambient term is proportional to percent of rays that hit nothing	
- Weight average by cosine of angle with normal	
- Take into account how far before ocluded	

Sunday, November 8, 2009

Sunday, November 8, 2009

