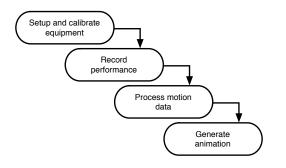
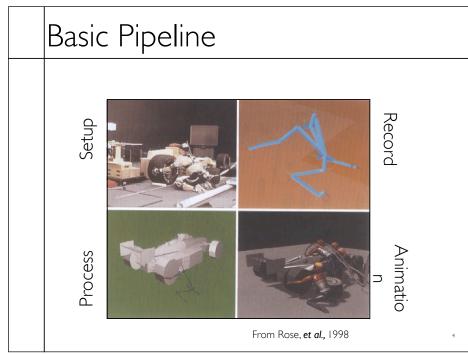

CS-184: Computer Graphics

Lecture #19: Motion Capture

Prof. James O'Brien University of California, Berkeley

V2009-S-19-1.0




Tuesday, November 17, 2009

Motion Capture

- Record motion from physical objects
- Use motion to animate virtual objects

Simplified Pipeline:

Tuesday, November 17, 2009

What types of objects?

- Human, whole body
- Portions of body
- Facial animation
- Animals
- Puppets
- Other objects

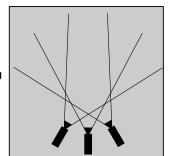
5

Capture Equipment

- Passive Optical
- Reflective markers
- IR (typically) illumination
- Special cameras
 - Fast, high res., filters
- Triangulate for positions

Images from Motion Analysis

Capture Equipment


Passive Optical Advantages

Accurate

- Passive Optical Managementers
 - Accurate No cables
- May use many rhigh frequency
- No cables

Disadvantages

- High frequency
 Requires lots of processing
- Disadvantages Expensive (>\$100K)
- Requires lots of occursions
- Expensive systemarker Swap
- Occlusions Lighting/camera limitations
- Marker swap
- Lighting / camera limitations

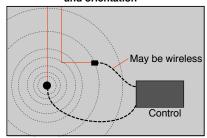
7

Capture Equipment

- Active Optical
 - Similar to passive but uses LEDs
 - Blink IDs, no marker swap
 - Number of markers trades off w/ frame rate

Phoenix Technology

Phase Space


Tuesday, November 17, 2009

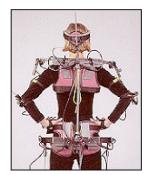
Capture Equipment

- Magnetic Capture Equipment
 - Transmitter emits field
 - Trackers selviaginetic Trackers
 - Trackers reportansmittien emits milentation

Trackers sense field

Trackers report location and orientation

9


Capture Equipment

- Electromagnetic Advantages
- 6 DOF data
- No occlusions
- · Less post processing
- Cheaper than optical
- Disadvantages
- Cables
- Problems with metal objects
- Low(er) frequency
- Limited range
- Limited number of trackers

Capture Equipment

• Electromechanical

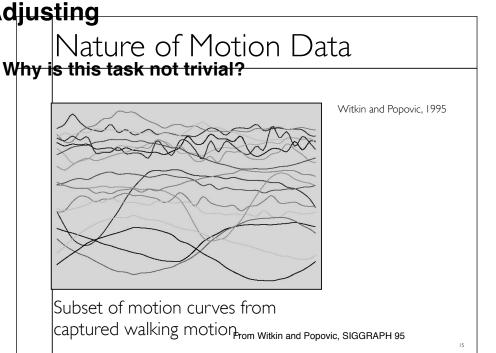
Analogus

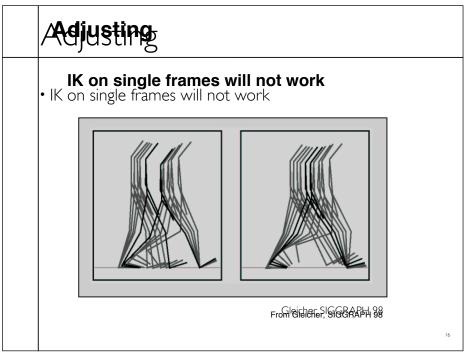
11

Capture Equipment

Puppets

Digital Image Design


Performance Capture


- Many studios regard *Motion* Capture as evil
 - Synonymous with low quality motion
 - No directive / creative control
 - Cheap
- · Performance Capture is different
- Use mocap device as an expressive input device
- Similar to digital music and MIDI keyboards

13

Manipulating Motion Data

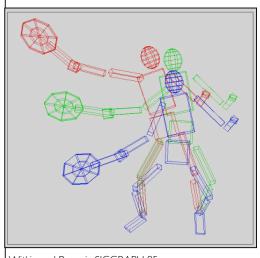
- Basic tasks
 - Adjusting
 - Blending
 - Transitioning
 - Retargeting
- Building graphs

Tuesday, November 17, 2009

Adjusting

• Rajusting a motion function in parts

Define desired function with


$$oldsymbol{m}(t) = oldsymbol{m}_0(t) + oldsymbol{d}(t)$$
 Adjustment Inital sampled data Result after adjustment

17

Adjusting

- Select adjustment function from "some nice space"
 - Example C2 B-splines
- Spread modification over reasonable period of time
- User selects support radius

Adjusting

IK uses control points of the B-spline now

Example:
position racket
fix right foot
fix left toes
balance

Witkin and Popovic SIGGRAPH 95

17

Adjusting Witkin and Popovic SIGGRAPH 95 What if adjustment periods overlap?

Tuesday, November 17, 2009

Blending,

• Given two motions, can we blend them qualities of both of find a motion 1/2 between them?

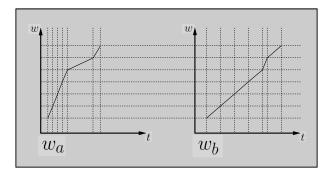

$$\boldsymbol{m}_{\alpha}(t) = \alpha \boldsymbol{m}_{a}(t) + (1 - \alpha) \boldsymbol{m}_{b}(t)$$

- Assumassume same DOFs
- · Assumassume parameter mappings

21

Blending

• Consider blending slow-walk and fast-walk



Bruderlin and Williams, SIGGRAPH 95

Blending

• Defin**Blending** functions to align features in motion

Define timewarp functions

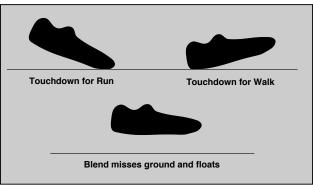
Normalized time is w

Blenging Blending

Blend in normalized time
 Blend in normalized time
 Blend in normalized time

$$\boldsymbol{m}_{\alpha}(w) = \alpha \boldsymbol{m}_{a}(w_{a}) + (1-\alpha)\boldsymbol{m}_{b}(w_{b})$$

Blend playback rate

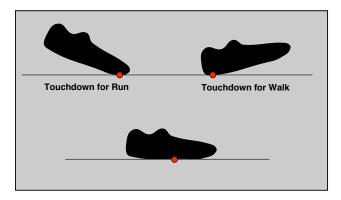

• Blend Blend playback rate

$$\frac{\mathrm{d}t}{\mathrm{d}w} = \alpha \frac{\mathrm{d}t}{\mathrm{d}w_a} + (1 - \alpha)\alpha \frac{\mathrm{d}t}{\mathrm{d}w_b}$$

Blending

• Blending may still break features in original motions

Blending may still break "features" in original motions



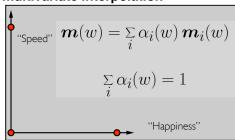
25

Blending

- Add **Biending**
- Enforce with IK over time

Add explicit constraints to key points

Blending / Adjustment


- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
- · Add quality metric on adjustment
- Minimize accelerations / torques
- Explicit smoothness constraints
- Other criteria...

27

Multivariate Blending

Blending

• Extend blending to multivariate interpolation **Extend to multivariate interpolation**

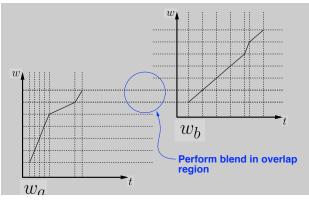
Weights are now barycentric coordiantes

Multivariate Blending

Blending

• Extend blending to multivariate interpolation **Extend to multivariate interpolation**

Becomes standard interpolation problem...Use standard scattered-data

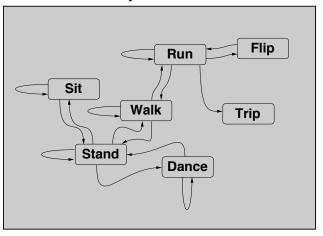

Use standard scattered-data interpolation methods

29

Transitions

• Transition from one motion to another

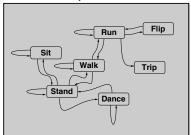
Transition from motion A to motion B


Cyclification

- Special case of transitioning
- Both motions are the same
- Need to modify beginning and end of a motion simultaneously

31

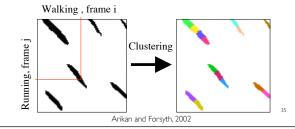
Transition Graphs


Transition Graphs

Motion Graphs

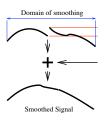
- Hand build motion graphs often used in games
 - Significant amount of work required
 - Limited transitions by design
- Motion graphs can also be built automatically

Transition Graphs



Motion Graphs

- Similarity metric
 - Measurement of how similar two frames of motion are
 - Based on joint angles or point positions
 - Must include some measure of velocity
 - Ideally independent of capture setup and skeleton
- Capture a "large" database of motions


Motion Graphs

- Compute similarity metric between all pairs of frames
 - Maybe expensive
 - Preprocessing step
- There may be too many good edges

Motion Graphs

- Random walks
 - Start in some part of the graph and randomly make transitions
 - Avoid dead ends
 - Useful for "idling" behaviors
- Transitions
- Use blending algorithm we discussed

Motion graphs

- Match imposed requirements
 - Start at a particular location
 - End at a particular location
 - Pass through particular pose
 - Can be solved using dynamic programing
 - Efficiency issues may require approximate solution
 - Notion of "goodness" of a solution

37

Suggested Reading

- Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95
- Motion signal processing, Bruderlin and Williams, SIGGRAPH 95
- Motion warping, Witkin and Popovic, SIGGRAPH 95
- Efficient generation of motion transitions using spacetime constrains, Rose et al., SIGGRAPH 96
- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and Bodenheimer, IEEE: Computer Graphics and Applications, v. 18, no. 5, 1998

Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.
- Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.
- Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.
- Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.
- Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, Bodenheimer, Brostow, and Hodgins, GI 2000.
- Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.
- Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and Tumblin, IEEE:TVCG 1998.