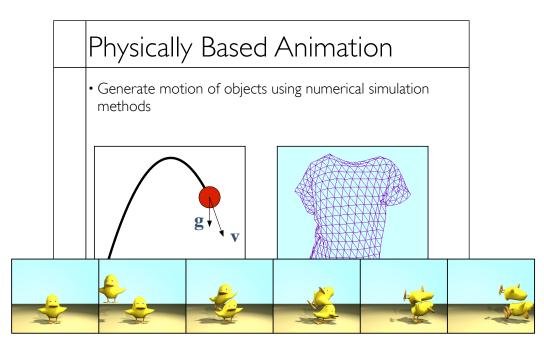
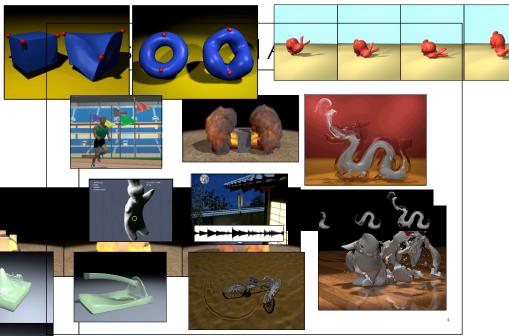


Today	
Introduction to Simulation	
Basic particle systems	
Time integration (simple version)	
	2

Tuesday, November 24, 2009





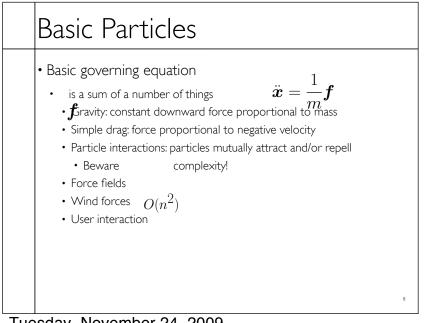
Particle Systems

- Single particles are very simple
- Large groups can produce interesting effects
- Supplement basic ballistic rules
- Collisions
- Interactions
- Force fields
- Springs
- Others...

Tuesday, November 24, 2009

Particle Systems

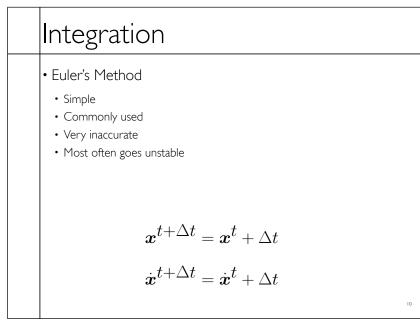
- Single particles are very simple
- Large groups can produce interesting effects
- Supplement basic ballistic rules
 - Collisions
- Interactions
- Force fields
- Springs
- Others...

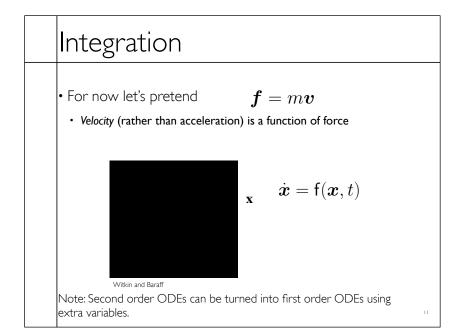


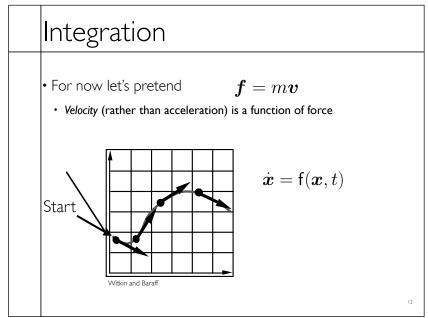
Tuesday, November 24, 2009

Basic Particles

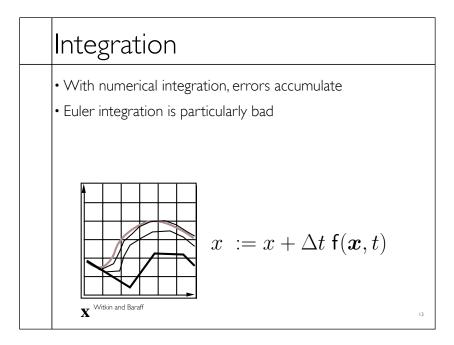
- Properties other than position
- Color
- Temp
- Age
- Differential equations also needed to govern these properties
- Collisions and other constrains directly modify position and/or velocity

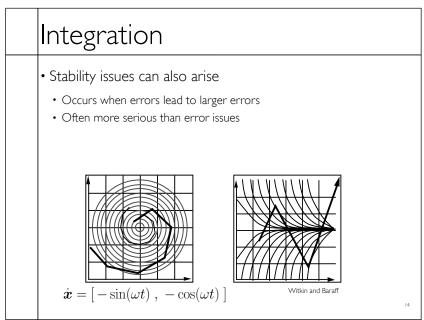




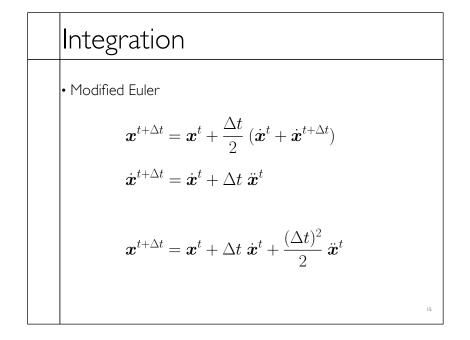


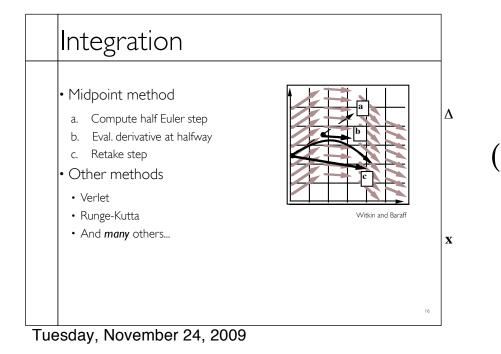
Tuesday, November 24, 2009





Tuesday, November 24, 2009





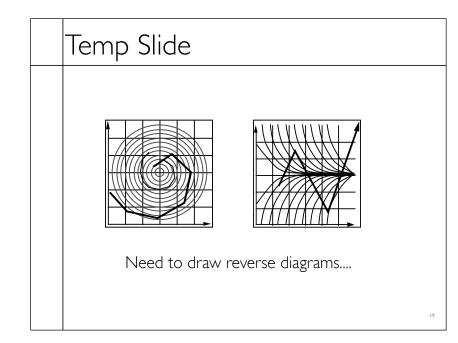
Integration

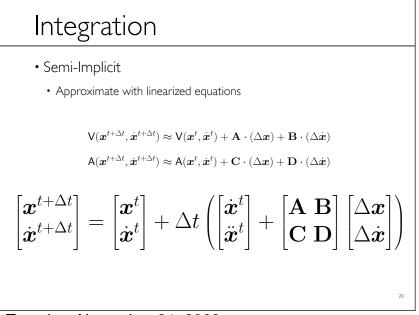
• Implicit methods

- Informally (incorrectly) called backward methods
- Use derivatives in the future for the current step

 $\begin{aligned} \boldsymbol{x}^{t+\Delta t} &= \boldsymbol{x}^t + \Delta t \ \dot{\boldsymbol{x}}^{t+\Delta t} \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \dot{\boldsymbol{x}}^t + \Delta t \ \ddot{\boldsymbol{x}}^{t+\Delta t} \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t+\Delta t) \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t+\Delta t) \end{aligned}$

Integration
• Implicit methods • Informally (incorrectly) called backward methods • Use derivatives in the future for the current step $\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \mathbf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t)$ $\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \mathbf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t)$ • Solve nonlinear problem for $\boldsymbol{x}^{t+\Delta t}$ and $\dot{\boldsymbol{x}}^{t+\Delta t}$ • This is fully implicit backward Euler • Many other implicit methods exist
Modified Euler is <i>partially</i> implicit as is Verlet Tuesday, November 24, 2009





Integration

- Explicit methods can be conditionally stable
- Depends on time-step and *stiffness* of system
- Fully implicit can be **un**conditionally stable
- May still have large errors
- Semi-implicit can be conditionally stable
- Nonlinearities can cause instability
- Generally more stable than explicit
- Comparable errors as explicit
- Often show up as excessive damping

Integration Integrators can be analyzed in modal domain System have different component behaviors Integrators impact components differently

22

Suggested Reading

- Physically Based Modeling: Principles and Practice
 - Andy Witkin and David Baraff
 - http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html
- Numerical Recipes in C++
- Chapter 16
- Any good text on integrating ODE's

23