CS 184: Assignment 2 — Scene Viewer

Ravi Ramamoorthi

1 Goals and Motivation

This is a more substantial assignment than homework 1, including more transformations, shading, and a
viewer for a scene specified in a text file. There are also many potential extra credit options available. To
make the workload manageable, PLEASE START EARLY. There are two weeks given for this assignment,
and YOU WILL NEED all of that time. It cannot be done a day or two before the deadline. We have
provided a complete skeleton with clear indications of what you need to fill in, to somewhat lessen the load
of the full assignment. It may also be worthwhile as you do this homework to think about your plans for
homework 4, as well as a partner for homeworks 4 and 5. As always, use the instructor, teaching assistants
and newsgroup as resources. Do not post actual code however on the newsgroup.

The overall goal is to take an input scene description that specifies the camera, scene width and height,
lights (up to 10 lights), object geometry (for simplicity, only spheres, teapots and cubes) and material
properties. The program should render this scene with correct camera positioning and lighting. The user
should be able to rotate the camera viewpoint as in the previous assignment, In addition, they should be
able to translate and scale the scene. The specific scene format is described below.

2 Logistics and Submission

We provide a complete skeleton code. It is more complicated than in homework 1, and one task very early on
is that you should try to understand how it works. As noted in the skeleton code, you will be making changes
where indicated in four files as noted in the README, instead of just one: Transform.cpp starting with
the previous assignment, but adding code for translations, scales, and perspective projection; readfile.cpp for
reading the input file (the parser structure is in place, but you need to deal with various aspects); display.cpp
for displaying the scene, and shaders/light.frag.glsl for the actual fragment shader. Your code submission to
the feedback server will include all four files. Please let the GSIs know if there is any issue with the feedback
servers or working with the skeleton. Please do not modify other files or add additional includes and so forth
(except for the extra credit part if you are doing that; if you do make changes for extra credit, you must still
submit the regular credit part in our skeleton and links to feedback server output).

We provide two scene files hwi.txt and demo.tzt, the first of which corresponds to homework 1, and the
second roughly to the demo OpenGL program. The output for demo.txt is provided in the image demo.tif.
In addition, we will post instructions and additional scene files as needed on Piazza for you to use with the
feedback servers. As with previous assignments, run submit hw2 from a directory containing the files:

o hw?2.txt that includes a link to your output on the feedback server.
e Transform.cpp

e readfile.cpp

o display.cpp

e light.frag.glsl

o hw2.zip Required only if you are showing extra credit; the complete source and executable for your
solution. The extra credit part may change other aspects of the skeleton, but you must still submit
the four files (and feedback server output) for the basic unmodified assignment above.

e comments.tzt Optionally any comments about your assignment, your output etc. Also please document
any extra credit options, and if it is significant, document with a writeup or link to a website, images
and so on. It is also good to simplify grading if you can document what does and does not work (so
we can grade fairly, instead of just by feedback server output, that may penalize you too heavily).

Limitations on OpenGL and GLM Functions: Since the goal is to write a modern OpenGL program
with minimal deprecated features, and also to learn the concepts, you should not use any OpenGL and GLM
functions, with the following exceptions (if in doubt ask):

e OpenGL functions for low-level drawing, as in homework 1. This includes glut functions for setting up
buffers, window management and keyboard events as in the skeleton, basic functions like clearing the
color or redisplaying.

e Basic GLM matrix and vector functions like multiplication, normalization, dot and cross products.
The skeleton code has many helpful routines for multiplication etc. Please see it for clarity of GLM
rules on row/column major for matrix creation and multiplication.

e Very limited use of OpenGL matrix stacks. In particular, you may set the OpenGL matrix mode to
perspective or modelview and load a matrix (using a mat4 from GLM). However, you may not call any
standard OpenGL commands like pushing and popping transforms, translating, rotating, multiplying
the matrix stack etc. You also may not use their GLM equivalents. One goal of this assignment is to
maintain the matrix stack yourself, and indeed, this is what modern OpenGL requires.

In particular, OpenGL and GLM provide standard functions for camera positioning, perspective projection,
translation, rotation, scaling etc. Your goal is to learn and re-create this pipeline, so you may not use these
commands; moreover many of them are deprecated and so should not be used in modern OpenGL.

3 File Format

Your program should be run with a single argument, that is the scene file. Each line in the scene file should
be treated separately and can be of the form. The skeleton code includes the core of a simple parser, and
you only need to fill in a few items.

e blank line Ignore any blank line (that just has whitespace)
e # comment line Any line starting with a # in the first character is a comment, and should be ignored.

e command parameter! parameter2 ... The first part of the line is always the command (to allow
formatting, it may be preceded with white space, as in the example scene files). Depending on the
command, it takes in some number of parameters. If the number of parameters is not appropriate for
that command (or the command is not recognized) you may print an error message and skip the line.
If you do the extra credit options, you will likely add commands and/or parameters; please document.
(the parser in the skeleton code already takes care of most of the basics of this; you don’t need to
worry too much about the mechanics).

In general, the program should respond gracefully to errors in the input, but parsing is not the point of this
assignment, so we will mostly test your program with well-formed input.

The commands that your program must support are the following. We first start with general commands
(you may require these be the first commands in the file, as in our examples, but you really shouldn’t need
to do that. In any case, you can use the core parser in the skeleton):

e size width height specifies the width and height of the scene.

e camera lookfromx lookfromy lookfromz lookatx lookaty lookatz upx upy upz fovy specifies the camera in
the standard way. zmin and zmaz are currently hardcoded. Note that this defines both the perspective
(given the aspect ratio of width/height and fovy) and modelview transforms for the camera.

Next, you must support the lighting commands. There can be up to 10 lights, that are enabled simply by
adding light commands to the file (your program should also gracefully disable lighting if no light commands
are specified; the skeleton already includes support for this):

e light x y z w r g b a has 8 parameters, the first 4 of which specify the homogeneous coordinates of
the light. It should be treated as directional (distant) if w = 0 and as a point light in homogeneous
coordinates otherwise. The colors are specified next; note that this is a 4-vector, not just a 3-vector
(for now, just set the a or alpha component to 1).

If a user specifies more than 10 lights, you may skip the light lines after the first 10 lights are input.

Shading also requires material properties. Note that these properties will in general be different for each
object. Your program must maintain a state (default values can be black), and update the relevant property
each time it is specified in the scene file. (Note that this is a simple state which is over-written. It is not
affected by geometric transformation commands like push/pop etc.) When an object is drawn, it takes the
current material properties. It is possible for example to change only the diffuse color between objects,
keeping the same specular color by using only a diffuse command between objects.

e ambient r g b a specifies the ambient color

e diffuse r g b a specifies the diffuse color of the surface

e specular r g b a specifies the specular color of the surface
e emission r g b a gives the emissive color of the surface

e shininess s specifies the shininess of the surface

We next need commands to specify object geometry. For simplicity, you can assume a maximum number
of objects (this should be at least 10; there is no reason not to have a larger number of objects). For now,
we are going to use glut commands for spheres, cubes and teapots, so the commands are simply

e teapot size makes a teapot of given size
e sphere size makes a sphere of given size
e cube size makes a cube of given size

For the sphere, one also needs to specify a tessellation internally when calling glutSolidSphere. 1 use 20.
Please see the skeleton code for the specifics of how these primitives are drawn; you don’t need to worry
about it for the most part.

Finally, we can specify transforms that should be in effect when executing an object above. Note that
this also includes lights, as in standard OpenGL (that is, the lights are also acted on by the modelview
matrix in standard OpenGL). However, note that the overall scene translation, camera rotation and scale,
specified with the keyboard do not act on the lights; only the transforms in the scene file act on both geometry
and lights as in standard OpenGL. Please post on Piazza or ask GSIs if you are confused.

We will implement a fairly complete set of transformations.

e translate x y z A translation 3-vector
e rotate x y z 6 A rotation of § about the axis x y z
e scale x y z A non-uniform scaling

Note that the transformations can be combined with a sequence of transform commands, e.g., translation,
rotation, translation, scale. Any transformation command should right-multiply the current transformation
matrix, following OpenGL convention. This convention is confusing, since the first transformation applied
is the last one in the code (or the transformation closest to the object command). For example, if one
gives commands for translation, rotation, scale (which is the conventional order), then one scales first, then
rotates, and then translates. See the skeleton code for helper functions to do the right multiplication, which
may also help explain the concepts.
To allow for a hierarchical scene definition, we also define

e pushTransform “pushes” the current transformation onto the stack (after we are done with our trans-
forms, we can retrieve it by popping).

e popTransform “pops” the transform from the stack (i.e., discards the current transform and goes to
the next one on the stack).

Your program must initially load the transform stack with the identity. Note that there are no commands
to explicitly set the transformation to the identity or make it a specific value. This is largely to get you
to practice good design. In essence, as in the examples, the commands for each object should lie within a
pushTransform ... pop Transform block. These blocks may also be nested.

4 User Interaction

When your program is run with a scene file, it must interpret it as above, and draw the scene. Most of the
basics for user interaction are already in the skeleton. In particular, the program should recognize the same
keys as in homework 1 (namely ‘h’, ‘+’,*-" ESC), as well as the following extensions:

e ‘g’as before, this switches between the glm::lookAt and the user commands. Now, it should also switch
between glm::Perspective and your command, and by default it should call your code.

e ‘r’should reset the transformation to the initial scene.

e ‘v’ should set the motion to correspond to rotating the camera (this should be the default and what
you did for homework 1). Note that the camera need no longer be looking at the origin as the center,
but you will still move the camera about the origin, keeping the center or look at point fixed.

e ‘¢’ should set the motion to translating the scene. In this case, the arrow keys should now move the
scene in the x and y directions respectively. The amount should be scaled by 0.01 for this purpose.
(Note that amount is initially set to 5).

e ‘s’ should do the same for scaling the scene, again in x and y directions. Again, amount should be
scaled by 0.01. By pressing ‘t’, ‘v’ or ‘s’ one controls whether you modify translation, scale, or view. If
one modifies say view, and then hits ‘t’ to modify translation, the system should remember and keep
the view change, i.e., should not revert to the original view.

5 Implementation Hints

The assignment itself has been completely specified above, along with skeleton code and some examples.
What follows below are hints about how to approach the assignment in a step-by-step fashion (the second
and third parts are largely independent and can be done in either order). However, you do not strictly need
to proceed per the guidance below; it is only highly recommended (and is the basis for the solution program).

5.1 Additional Transforms

You should start with implementing additional transforms, beyond those required in homework 1. The
skeleton implements the basic functionality; all you need to do is add the appropriate routines to the
Transform class for translation and scale. In addition, you must implement the perspective transform
yourself, rather than calling the GLM command. These modifications should not be too hard to do. Note
also how the skeleton code handles the translation and scale, accounting for the column-major order in
OpenGL. You should now have homework 1, except you've written all the transformations yourself, and you
can scale and translate the teapot. (If you can’t yet get the teapot to display with the HW 2 framework,
you may want to use the HW 1 framework instead for now so you can actually see it).

5.2 Lighting

Your next challenge is to implement lighting. At this point, you may want to fill in just enough of the parser
to handle the light command. The important aspect is to develop the fragment shader. The example shaders
for the demo and homework 1 already include the basic ability to deal with point and directional lights. You
just need to declare a uniform to store all the 10 lights, and loop over them, adding the color to the final
output. The skeleton includes the basic framework to set up the fragment shader. The shader also takes
uniforms for the material properties. The shading equation you should implement is:

I=A+E+) L;j[Dmax(N - L,0) + Smax(N - H,0)°], (1)

where [is the final intensity, A is the ambient term, F is the self-emission, and the diffuse D and specular
S are summed over all lights ¢ with intensity L;. N is the surface normal, L is the direction to the light,
H is the half-angle, and s is the shininess. You need to be able to compute the direction to the light and
half-angle.

5.3 Geometry and Transforms

Finally, you need to implement the full file format. The scene and camera commands are pretty easily
implemented, simply by inputting the values and then using them in the initialization routine. (Much of
this is already done in the skeleton and the parts you need to code are clearly indicated). Note that the
camera up vector need not be orthogonal to the direction connecting the eye and center, and you should
create a full coordinate frame. (Support for this is already provided in the skeleton and the helper function
in Transform.cpp). The material property parameters are easily implemented simply by keeping the current
state of material properties and updating it as needed.

For the transform commands, one must maintain a stack of transformations. I recommend doing so with
the C++ standard template library (you should look this up if you don’t already know it). In particular,
my code says stack <mat4> transfstack ; transfstack.push(matf(1.0)) ;. This defines a stack of mat4 and
sets the initial value to the identity. Then, when you encounter a transform, you set up the corresponding
glm vector and right-multiply the stack. This is rather confusing because of the row-column switch, so the
code actually left-multiples. My code uses a function with body as follows: matf & T = transfstack.top() ;
T=M*T;, where M is the transformation matrix. Push and pop transforms just operate on the stack
in the standard way. (Many of these functions are already available to you in the skeleton code).

All of this is relevant when an object definition (or light) is reached. For objects, you will store them
in an array that includes the material properties (in effect when the object call happens) and the current
transformation. Note that this transformation does not include the camera commands in my implementation;
instead I multiply that in properly in the display() function. For lights, you will similarly multiply by the
transformation matrix to store the transformed light. Again, remember row and column major for matrix-
vector multiplication (see the hint in homework 1).

Finally, the display routine loads the camera look at matrix, then sets up the lights, transforming them
by this matrix. It then loops over the objects, setting the reflectance properties in the shader, and setting the
correct transformation matrix. To set the correct transformation matrix, one needs to consider the overall
translation, scaling, as well as camera matrix and the object transform, and concatenate them all prop-
erly. Do this yourself, and load it into OpenGL. Finally, you actually draw the object using glutSolidCube,
glutSolidSphere, glutSolidTeapot with the size argument (the drawing is already in the skeleton code).

The one remaining element is parsing the scene file, for which the skeleton already provides an almost
complete framework. You may use any method, this is not the core part of the assignment. I simply start
with the code to read the shader in the demo, and turn each line into a string stream in C++. I check for
blank and comment lines using
if ((str.find_first_not_of(” \t\r\n”) != string::npos) && (str[0] = "#’)) and if so I just do
stringstream s(str) ; s > c¢md ; where emd is a string that is the command. A sequence of if statements
then deals with each command. For parsing the remaining parameters, I have a simple function to read a
specified number of parameters from a string and return a failure code if not.

5.4 Extra Credit

There are a number of opportunities for extra credit, with a small number of points proportional to effort.
In essence, you want to build a complete scene viewer and manipulator. Opportunities include:

Lighting and Shading: Include a fancier lighting and shading model, such as spot lights, environment
lighting etc. Include more complicated shading such as shadows with shadow mapping, reflections, textures
and so on.

Scene Definitions: Include more complete support for scene graphs and instancing, to for example define
the sphere in the example and then instance it to new copies. Look up scene graph methods and editors and
build a more complete hierarchical scene graph.

User Interaction: Let the user visually modify the input file (at least given an option to edit and
reload). Include more possibilities, at least a zoom key (maybe with the mouse) and ways to pick and
scale/translate/rotate individual objects in the scene.

Light Motion: Let the user move the lights (they could click ‘0’ - ‘9’ to select a light, and then move it
like the camera).

Geometry: Include support for more objects, at least triangle meshes with normals. For each object,
store it in a vertex buffer and send it properly to the graphics card.

A really good extra credit solution would include the usability of something like ivview (this is a software
on the SGIs from a time long ago, and you may want to look it up and try to emulate it), with full support
for scene graphs and picking. Given the capabilities of today’s programmable graphics cards, you should
also include a variety of more complex visual effects. You may want to look for inspiration at the ray tracing
assignment in homework 5, and at least parse everything in that assignment (thus, your rasterizer in this
assignment and raytracer in a later assignment could both take the same input file). It would be cool if you
could provide raytrace quality images (not so hard, since you just need to do shadow mapping for which
there are many online tutorials).

