
1

Foundations of Computer Graphics
(Fall 2012)

CS 184, Lecture 12: Raster Graphics and Pipeline
http://inst.eecs.berkeley.edu/~cs184

Lecture Overview
§  Many basic things tying together course

§  Is part of the material, will be covered on midterm

§  Raster graphics

§  Gamma Correction

§  Color

§  Hardware pipeline and rasterization

§  Displaying Images: Ray Tracing and Rasterization
§  Essentially what this course is about (HW 2 and HW 5)

§  Introduced now so could cover basics for HW 1,2,3
§  Course will now “breathe” to review some topics

Some images from wikipedia

Images and Raster Graphics
§  Real world is continuous (almost)

§  How to represent images on a display?

§  Raster graphics: use a bitmap with discrete pixels

§  Raster scan CRT
(paints image
line by line)

§  Cannot be resized without loss

§  Compare to vector graphics
§  Resized arbitrarily. For drawings
§  But how to represent photos, CG?

Displays and Raster Devices
§  CRT, flat panel, television (rect array of pixels)

§  Printers (scanning: no physical grid but print ink)

§  Digital cameras (grid light-sensitive pixels)

§  Scanner (linear array of pixels swept across)

§  Store image as 2D array (of RGB [sub-pixel] values)
§  In practice, there may be resolution mismatch, resize
§  Resize across platforms (phone, screen, large TV)

§  Vector image: description of shapes (line, circle, …)
§  E.g., line art such as in Adobe Illustrator
§  Resolution-Independent but must rasterize to display
§  Doesn’t work well for photographs, complex images

Resolutions
§  Size of grid (1920x1200 = 2,304,000 pixels)

§  32 bit of memory for RGBA framebuffer 8+ MB

§  For printers, pixel density (300 dpi or ppi)
§  Printers often binary or CMYK, require finer grid
§  iPhone “retina display” > 300 dpi. At 12 inches,

pixels closer than retina’s ability to distinguish angles

§  Digital cameras in Mega-Pixels (often > 10 MP)
§  Color filter array (Bayer Mosaic)
§  Pixels really small (micron)

Monitor Intensities

§  Intensity usually stored with 8 bits [0…255]

§  HDR can be 16 bits or more [0…65535]

§  Resolution-independent use [0…1] intermediate

§  Monitor takes input value [0…1] outputs intensity
§  Non-zero intensity for 0, black level even when off
§  1.0 is maximum intensity (output 1.0/0.0 is contrast)
§  Non-linear response (as is human perception)
§  0.5 may map to 0.25 times the response of 1.0
§  Gamma characterization and gamma correction
§  Some history from CRT physics and exponential forms

2

Lecture Overview
§  Many basic things tying together course

§  Raster graphics

§  Gamma Correction

§  Color

§  Hardware pipeline and rasterization

§  Displaying Images: Ray Tracing and Rasterization
§  Essentially what this course is about (HW 2 and HW 5)

Some images from wikipedia

Nonlinearity and Gamma

§  Exponential function

§  I is displayed intensity, a is pixel value

§  For many monitors γ is between 1.8 and 2.2

§  In computer graphics, most images are linear
§  Lighting and material interact linearly

§  Gamma correction

§  Examples with γ = 2
§  Input a = 0 leads to final intensity I = 0, no correction
§  Input a = 1 leads to final intensity I = 1, no correction
§  Input a = 0.5 final intensity 0.25. Correct to 0.707107
§  Makes image “brighter” [brightens mid-tones]

 I = aγ

 a ' = a
1
γ

Gamma Correction
§  Can be messy for images. Usually gamma

on one monitor, but viewed on others…

§  For television, encode with gamma (often
0.45, decode with gamma 2.2)

§  CG, encode gamma is usually 1, correct

www.dfstudios.co.uk/wp-content/
uploads/2010/12/graph_gamcor.png

Finding Monitor Gamma

§  Adjust grey until match 0-1 checkerboard to find
mid-point a value i.e., a for I = 0.5

I = aγ

γ = log0.5
loga

Human Perception

§  Why not just make everything linear, avoid gamma

§  Ideally, 256 intensity values look linear

§  But human perception itself non-linear
§  Gamma between 1.5 and 3 depending on conditions
§  Gamma is (sometimes) a feature
§  Equally spaced input values are perceived roughly equal

Lecture Overview
§  Many basic things tying together course

§  Raster graphics

§  Gamma Correction

§  Color

§  Hardware pipeline and rasterization

§  Displaying Images: Ray Tracing and Rasterization
§  Essentially what this course is about (HW 2 and HW 5)

Some images from wikipedia

3

Color

§  Huge topic (can read textbooks)
§  Schrodinger much more work on this than quantum

§  For this course, RGB (red green blue), 3 primaries

§  Additive (not subtractive) mixing for arbitrary colors

§  Grayscale: 0.3 R + 0.6 G + 0.1 B

§  Secondary Colors (additive, not paints etc.)
§  Red + Green = Yellow, Red + Blue = Magenta,

Blue + Green = Cyan, R+G+B = White

§  Many other color spaces
§  HSV, CIE etc.

RGB Color

§  Venn, color cube

§  Not all colors possible

Images from wikipedia

Eyes as Sensors

Slides courtesy Prof. O’Brien

Cones (Trichromatic)

Cone Response Color Matching Functions

4

CIE XYZ Alpha Compositing

§  RGBA (32 bits including alpha transparency)
§  You mostly use 1 (opaque)
§  Can simulate sub-pixel coverage and effects

§  Compositing algebra

Lecture Overview
§  Many basic things tying together course

§  Raster graphics

§  Gamma Correction

§  Color

§  Hardware pipeline and rasterization

§  Displaying Images: Ray Tracing and Rasterization
§  Essentially what this course is about (HW 2 and HW 5)

Read chapter 8 more details

Hardware Pipeline

§  Application generates stream of vertices

§  Vertex shader called for each vertex
§  Output is transformed geometry

§  OpenGL rasterizes transformed vertices
§  Output are fragments

§  Fragment shader for each
fragment
§  Output is Framebuffer image

Rasterization

§  In modern OpenGL, really only OpenGL function
§  Almost everything is user-specified, programmable
§  Basically, how to draw (2D) primitive on screen

§  Long history
§  Bresenham line drawing
§  Polygon clipping
§  Antialiasing

§  What we care about
§  OpenGL generates a fragment for each pixel in triangle
§  Colors, values interpolated from vertices (Gouraud)

Z-Buffer

§  Sort fragments by depth
(only draw closest one)

§  New fragment replaces
old if depth test works

§  OpenGL does this auto
can override if you want

§  Must store z memory

§  Simple, easy to use

5

Lecture Overview
§  Many basic things tying together course

§  Raster graphics

§  Gamma Correction

§  Color

§  Hardware pipeline and rasterization

§  Displaying Images: Ray Tracing and Rasterization
§  Essentially what this course is about (HW 2 and HW 5)

What is the core of 3D pipeline?

§  For each object (triangle), for each pixel,
compute shading (do fragment program)

§  Rasterization (OpenGL) in HW 2
§  For each object (triangle)

§  For each pixel spanned by that triangle
§  Call fragment program

§  Ray Tracing in HW 5: flip loops
§  For each pixel

§  For each triangle
§  Compute shading (rough equivalent of fragment program)

§  HW 2, 5 take almost same input. Core of class

Ray Tracing vs Rasterization

§  Rasterization complexity is N * d
§  (N = objs, p = pix, d = pix/object)
§  Must touch each object (but culling possible)

§  Ray tracing naïve complexity is p * N
§  Much higher since p >> d
§  But acceleration structures allow p * log (N)
§  Must touch each pixel
§  Ray tracing can win if geometry very complex

§  Historically, OpenGL real-time, ray tracing slow
§  Now, real-time ray tracers, OpenRT, NVIDIA Optix
§  Ray tracing has advantage for shadows, interreflections
§  Hybrid solutions now common

Course Goals and Overview

§  Generate images from 3D graphics

§  Using both rasterization (OpenGL) and Raytracing
§  HW 2 (OpenGL), HW 5 (Ray Tracing)

§  Both require knowledge of transforms, viewing
§  HW 1

§  Need geometric model for rendering
§  Splines for modeling (HW 3)

§  Having fun and writing “real” 3D graphics programs
§  HW 4 (real-time scene in OpenGL)
§  HW 6 (final project)

