Foundations of Computer Graphics

(Fall 2012)

CS 184, Lecture 2: Review of Basic Math http://inst.eecs.berkeley.edu/~cs184

To Do

- Complete Assignment 0 (a due 29, b due 31)
- Get help if issues with compiling, programming
- Textbooks: access to OpenGL references
- About first few lectures
- Somewhat technical: core math ideas in graphics
- HW1 is simple (only few lines of code): Lets you see how to use some ideas discussed in lecture, create images

Vector Multiplication

- Dot product
- Cross product
- Orthonormal bases and coordinate frames
- Note: Some books talk about right and left-handed coordinate systems. We always use right-handed

Dot (scalar) product

Dot product: some applications in CG

- Find angle between two vectors (e.g. cosine of angle between light source and surface for shading)
" Finding projection of one vector on another (e.g. coordinates of point in arbitrary coordinate system)
- Advantage: computed easily in cartesian components

Vector Multiplication

- Dot product
- Cross product
- Orthonormal bases and coordinate frames
- Note: Some books talk about right and left-handed coordinate systems. We always use right-handed

Cross (vector) product

$$
\left\{\begin{array}{c}
\begin{array}{c}
a \times b=-b \times a \\
\|a \times b| |=\| a\|\mid\| b \| \sin \phi
\end{array} \\
\underbrace{b}_{\mathbf{a}}
\end{array}\right.
$$

- Cross product orthogonal to two initial vectors
- Direction determined by right-hand rule
- Useful in constructing coordinate systems (later)

Cross product: Properties

$$
\begin{array}{ll}
x \times y=+z & a \times b=-b \times a \\
y \times x=-z & a \times a=0 \\
y \times z=+x & a \times(b+c)=a \times b+a \times c \\
z \times y=-x & a \times(k b)=k(a \times b) \\
z \times x=+y & \\
x \times z=-y &
\end{array}
$$

Cross product: Cartesian formula?
$a \times b=\left|\begin{array}{ccc}x & y & z \\ x_{a} & y_{a} & z_{a} \\ x_{b} & y_{b} & z_{b}\end{array}\right|=\left(\begin{array}{c}y_{a} z_{b}-y_{b} z_{a} \\ z_{a} x_{b}-x_{a} z_{b} \\ x_{a} y_{b}-y_{a} x_{b}\end{array}\right)$
$a \times b=A^{*} b=\left(\begin{array}{ccc}0 & -z_{a} & y_{a} \\ z_{a} & 0 & -x_{a} \\ -y_{a} & x_{a} & 0\end{array}\right)\left(\begin{array}{l}x_{b} \\ y_{b} \\ z_{b}\end{array}\right)$
Dual matrix of vector a

Vector Multiplication

- Dot product
- Cross product
- Orthonormal bases and coordinate frames
- Note: book talks about right and left-handed coordinate systems. We always use right-handed

Coordinate Frames

- Any set of 3 vectors (in 3D) so that

$$
\begin{aligned}
& \|u\|=\|v\|=\|w\|=1 \\
& u \cdot v=v \cdot w=u \cdot w=0 \\
& w=u \times v \\
& p=(p \cdot u) u+(p \cdot v) v+(p \cdot w) w
\end{aligned}
$$

Constructing a coordinate frame

- Often, given a vector a (viewing direction in HW1), want to construct an orthonormal basis
- Need a second vector b (up direction of camera in HW1)
- Construct an orthonormal basis (for instance, camera coordinate frame to transform world objects into in HW1)

- Number of columns in first must = rows in second
$\left(\begin{array}{ll}1 & 3 \\ 5 & 2 \\ 0 & 4\end{array}\right)\left(\begin{array}{llll}3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3\end{array}\right)$
- Element (i, j) in product is dot product of row i of first matrix and column j of second matrix

Constructing a coordinate frame?
We want to associate \mathbf{w} with \mathbf{a}, and \mathbf{v} with \mathbf{b}

- But a and bare neither orthogonal nor unit norm
- And we also need to find \mathbf{u}

$$
\begin{aligned}
w & =\frac{a}{\| a| |} \\
u & =\frac{b \times w}{\|b \times w\|} \\
v & =w \times u
\end{aligned}
$$

Matrix-matrix multiplication

- Number of columns in first must = rows in second

= Element (i, j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

- Number of columns in first must = rows in second

- Element (i, j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

- Number of columns in first must = rows in second
$\left(\begin{array}{llll}3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 5 & 2 \\ 0 & 4\end{array}\right)$ NOT EVEN LEGAL!!
- Non-commutative (AB and BA are different in general)
- Associative and distributive
- $A(B+C)=A B+A C$
- $(A+B) C=A C+B C$

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)^{T}=\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right) \\
(A B)^{T}=B^{T} A^{T}
\end{gathered}
$$

Matrix-Vector Multiplication

- Key for transforming points (next lecture)
- Treat vector as a column matrix ($\mathrm{m} \times 1$)
- E.g. 2D reflection about y-axis

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

Identity Matrix and Inverses

$$
I_{3 \times 3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
A A^{-1}=A^{-1} A=I
$$

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

