CS 184: Foundations of Computer Graphics Introduction to Animation

Rahul Narain

The Story So Far

scene \longrightarrow image

Animation

scene $(t) \longrightarrow$ image (t)

Animation

The Problem

Animation $=$ Time \rightarrow Scene?

2 minutes of animation $\approx 3,000$ frames
High-resolution scene ≈ 1000 's of vertices

The Problem

Animation $=$ Time \rightarrow Scene?

2 minutes of animation $\approx 3,000$ frames
High-resolution scene ≈ 1000 's of vertices

How to define the animation in a controllable, easy-to-use, high-level way?

The Art Side

- "Principles of Traditional Animation Applied to 3D Computer Animation", John Lasseter, 1987

Squash
and stretch

Anticipation and follow-through

Secondary action

Animation

- How to define the pose of an object?
- How to define the time variation of pose?

Animatable Models

- Particles
- Position (3 DOFs)
- Easy way to model

$$
\text { - }(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$ fireworks, simple explosions, splashes, etc.

Animatable Models

- Particles
- Rigid bodies
- Position and orientation ($3+3$ DOFs)

Animatable Models

- Particles
- Rigid bodies
- Articulated bodies
- Rigid links connected by joints
(\#DOFs = \#joints)
- e.g. robots, character "skeletons"

Animatable Models

- Particles
- Rigid bodies
- Articulated bodies
- Deformable bodies

- Discretized as meshes with moving vertices
- Cloth, hair, plastic, muscle and skin, ...

Animatable Models

- Particles
- Rigid bodies
- Articulated bodies
- Deformable bodies
- Pluids
- Represented as particles or as volumetric girids

Animation Techniques

- Keyframe animation
- Define key moments, then interpolate
- Motion capture
- Record motion of performer
- Procedural / simulation
- Compute motion automatically via physics

Keyframing (Manual)

- Manually specify "key" moments of the action

- System interpolates the inbetween frames

Keyframing (Manual)

Iearning Maya 2.0

Motion Capture (Recorded)

- Place markers on subject, record their performance in 3D
- Time-consuming clean-up
- Hard to edit after the fact

Motion Capture (Ruecorded)

Motion Graphs

- Chop motion capture sequence into lots of short clips (e.g. walk, run, jump, crouch, ...)
- Find pairs of clips with smooth transitions
- At run time, traverse graph to get a smooth sequence of clips

Arikan et al. 2003

Motion Graphs

- Chop motion capture sequence into lots of short clips (e.g. walk, run, jump, crouch, ...)
- Find pairs of clips with smooth transitions
- At run time, traverse graph to get a smooth sequence of clips

Arikan et al. 2003

Simulation (automatic)

- Solve physical equations of motion using numerical methods
- $\boldsymbol{\Gamma}=\mathrm{m}$ a
- Given state (pos, vel) at time t, find state at time $t+\Delta t$, then at $t+2 \Delta t$, then...

Simulation (automatic)

Goldenthal et al. 2007

Simulation (automatic)

Feldman et al. 2003

Simulation (automatic)

Feldman et al. 2003

Interactive animation

Interactive animation

Parker and O'Brien 2009

Combinations

Character = articulated skeleton + deformable skin

Keyframing (or motion capture) for characters' primary motion

Simulation for cloth, hair, muscle

The End

Next week:
Kinematics of articulated bodies

