CS 184: Foundations of Computer Graphics

Kinematics of Articulated Bodies

Rahul Narain

Kinematics vs. dynamics

- Kinematics = motion but no forces
- Keyframing, motion capture, etc.
- Dynamics = motion from forces
- Simulation

If you want to know more about dynamics and simulation...

- Particles and rigid bodies:
- Baraff and Witkin, "Physically Based Modeling", 2001
- Deformable bodies:
- James O'Brien's CS 283 slides and readings on elastic simulation
- Fluids:
- Bridson and Müller-Fischer, "Fluid Simulation for Computer Animation", 2007

Articulated bodies

- Rigid bodies connected with joints
- Topology (what's connected to what)
- Geometric relations from joints
- Not necessarily what's displayed in the end

Articulated bodies

- Position and orientation set by "global" transformation
- Other bodies move relative to root

Articulated bodies

- A joint
- Inboard body (towards root)
- Outboard body (away from root)

Articulated bodies

- A body
- Inboard joint
- Outboard joint(s)
- Parent
- Child(ren)

Articulated bodies

- A body
- Inboard joint
- Outboard joint(s)
- Parent
- Child(ren)

Articulated bodies

- Interior joints are typically not 6 DOF

Pin joint:
rotation about one axis
Ball:
arbitrary rotation

Wikimedia Commons

Forward and inverse kinematics

- Forward kinematics:
- Given all the joint parameters, where are the bodies?
- Inverse kinematics:
- Given where I want some body to be, what joint parameters do I need to set?

Forward kinematics

- Each body gets its own local coordinate system
- Position of a vertex is fixed relative to local coordinate system
- What is its position relative to world coordinates?

Forward kinematics

- Pin joints

- Translate inboard joint to origin
- Apply rotation about axis

- Translate origin to location of outboard joint on parent body

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{t}_{\text {parent }} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}(\theta) & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{t}_{\text {child }} \\
0 & 1
\end{array}\right]
$$

Forward kinematics

- Prism joints

- Translate inboard joint to origin
- Translate along axis
- Translate origin to location of outboard joint on parent body

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{I} & \mathrm{t}_{\text {parent }} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathrm{ta} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & -\mathrm{t}_{\text {child }} \\
0 & 1
\end{array}\right]
$$

Forward kinematics

- Composite transformations up the hierarchy

- $\mathbf{M}_{\text {world } \leftarrow \text { forearm }}=\mathbf{M}_{\text {world } \leftarrow \text { hip }} \cdot \mathbf{M}_{\text {hip }}$ torso $\cdot \mathbf{M}_{\text {torso }}$ upperarm $\cdot \mathbf{M}_{\text {upperarm }} \leftarrow$ forearm

Forward kinematics

- Composite transformations up the hierarchy

1.

Inverse kinematics

- Given
- Root transformation

- Initial configuration
- Desired location of end point
- Find

- Internal parameter settings

Inverse kinematics

- A simple two segment arm in 2D

Direct IK

- Just solve for the parameters! What's the problem?

$$
\begin{aligned}
& \theta_{2}=\cos ^{-1}\left(\frac{p_{z}^{2}+p_{x}^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} l_{2}}\right) \\
& \theta_{1}=\frac{-p_{z} l_{2} \sin \left(\theta_{2}\right)+p_{x}\left(l_{1}+l_{2} \cos \left(\theta_{2}\right)\right)}{p_{x} l_{2} \sin \left(\theta_{2}\right)+p_{z}\left(l_{1}+l_{2} \cos \left(\theta_{2}\right)\right)}
\end{aligned}
$$

Why is this hard?

Multiple disconnected solutions

Multiple connected solutions

Why is this hard?

Solutions don't always exist

Numerical IK

- Start in some initial configuration
- Define an error metric (e.g. pgoal - pourrent $)$
- Compute Jacobian of error w.r.t joint angles $\boldsymbol{\theta}$
- Apply Newton's method (or other procedure)
- Iterate...

Inverse kinematics

- Recall the simple two segment arm:

Numerical IK

- We can write the derivatives

Numerical IK

- If we change the angles by a small amount $\mathrm{d} \theta_{1}$ and $\mathrm{d} \theta_{2}$, this tells us how p_{x} and p_{z} change.

The Jacobian

- Matrix of partial derivatives $J_{i j}=\frac{\partial p_{i}}{\partial \theta_{j}}$
- For a two segment arm in 2D,

$$
\mathbf{J}=\left[\begin{array}{ll}
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}} \\
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}}
\end{array}\right]
$$

The Jacobian

- A small change in $\boldsymbol{\theta}$ leads to a small change in \mathbf{p}

$$
\begin{aligned}
& \mathrm{d} p_{x}=\frac{\partial p_{x}}{\partial \theta_{1}} \mathrm{~d} \theta_{1}+\frac{\partial p_{x}}{\partial \theta_{2}} \mathrm{~d} \theta_{2} \\
& \mathrm{~d} p_{z}=\frac{\partial p_{z}}{\partial \theta_{1}} \mathrm{~d} \theta_{1}+\frac{\partial p_{z}}{\partial \theta_{2}} \mathrm{~d} \theta_{2}
\end{aligned} \quad \mathrm{~d} \mathbf{p}=\left[\begin{array}{ll}
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{x}}{\partial \theta_{2}} \\
\frac{\partial p_{z}}{\partial \theta_{1}} & \frac{\partial p_{z}}{\partial \theta_{2}}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{d} \theta_{1} \\
\mathrm{~d} \theta_{2}
\end{array}\right]=\mathbf{J} \cdot \mathrm{d} \theta
$$

- So... if we want to change \mathbf{p}, this tells us how to change $\boldsymbol{\theta}$?

$$
\begin{aligned}
& \mathrm{d} \mathbf{p}=\mathbf{J} \cdot \mathrm{d} \theta \\
& \mathrm{~d} \theta=\mathbf{J}^{-1} \cdot \mathrm{~d} \mathbf{p} ?
\end{aligned}
$$

The Jacobian

- Put another way, J tells us approximately how much x will change in world space when we adjust a joint parameter $q_{i} \uparrow$

$$
\Delta x \approx \Delta q_{i}\left(K_{1}, \cdots, K_{6}\right)
$$

Approximate Actual

Back to inverse kinematics

- We want \mathbf{p} to change by dp
- Can we simply change 0 by $\mathrm{d} \boldsymbol{\theta}=\boldsymbol{J}^{-1} \mathrm{~d} \boldsymbol{p}$?
- ...Is J invertible?

Inverse kinematics

- Problems:
- Jacobian may (will!) not be invertible \rightarrow use pseudo-inverse, or use more robust numerical method
- Jacobian is not constant \rightarrow take small steps
- Nonlinear optimization, but (mostly) well-behaved

Multiple links

- We need a generic way of building the Jacobian

$$
\mathbf{q}=\left[\begin{array}{c}
\theta_{1} \\
d_{2 a} \\
\theta_{2 b} \\
\theta_{3}
\end{array}\right] \quad \mathbf{J}=\left[\begin{array}{llll}
\frac{\partial \mathbf{p}}{\partial \theta_{1}} & \frac{\partial \mathbf{p}}{\partial d_{2 a}} & \frac{\partial \mathbf{p}}{\partial \theta_{2 b}} & \frac{\partial \mathbf{p}}{\partial \theta_{3}}
\end{array}\right]=?
$$

Remember forward kinematics

- World position of point is given by composition of transformations

$$
\mathbf{p}=\mathbf{M}_{0 \leftarrow 1} \cdot \mathbf{M}_{1 \leftarrow 2 a} \cdot \mathbf{M}_{2 a \leftarrow 2 b} \cdot \mathbf{M}_{2 b \leftarrow 3} \cdot \mathbf{x}
$$

- If joint 2 b moves, only $\mathbb{M}_{2 a \leftarrow-2 b}$ changes

$$
\begin{aligned}
\frac{\partial \mathbf{p}}{\partial \theta_{2 b}} & =\mathbf{M}_{0 \leftarrow-1} \cdot \mathbf{M}_{1 \leftarrow 2 a} \cdot \frac{\partial}{\partial \theta_{2 b}} \mathbf{M}_{2 a \leftarrow 2 b} \cdot \mathbf{M}_{2 b \leftarrow 3} \cdot \mathbf{x} \\
& =\mathbf{M}_{0 \leftarrow 1} \cdot \mathbf{M}_{1 \leftarrow 2 a} \cdot \mathbf{J}_{2 b}\left(\theta_{2 b}\right) \cdot \mathbf{M}_{2 b \leftarrow-3} \cdot \mathbf{x}
\end{aligned}
$$

Multiple links

- Compute each joint's Jacobian locally (between outboard and inboard bodies)

$$
\left.\begin{array}{cc}
\frac{\partial \mathbf{p}}{\partial \theta_{1}}= & \mathbf{J}_{1}\left(\theta_{1}\right) \mathbf{M}_{1 \leftarrow 3} \mathbf{x} \\
\frac{\partial \mathbf{p}}{\partial d_{2 a}}=\mathbf{M}_{0 \leftarrow 1} \mathbf{J}_{2 a}\left(d_{2 a}\right) \mathbf{M}_{2 a \leftarrow 3} \mathbf{x} & \mathbf{q}=\left[\begin{array}{c}
\theta_{1} \\
\frac{\partial \mathbf{p}}{\partial \theta_{2 b}}
\end{array}=\mathbf{M}_{0 \leftarrow 2 a} \mathbf{J}_{2 b}\left(\theta_{2 b}\right) \mathbf{M}_{2 b \leftarrow 3} \mathbf{x}\right. \\
\frac{\partial \mathbf{p}}{\partial \theta_{3}}=\mathbf{M}_{0 \leftarrow 2 b} \mathbf{J}_{3}\left(\theta_{3}\right) \mathbf{x} & \\
\theta_{3}
\end{array}\right]
$$

Multiple links

- Compute each joint's Jacobian locally (between outboard and inboard bodies)

$$
\mathbf{J}=\left[\begin{array}{r}
\cdot \mathbf{J}_{1}\left(\theta_{1}\right) \cdot \mathbf{M}_{1 \leftarrow 3} \mathbf{x}, \\
\mathbf{M}_{0 \leftarrow 1} \cdot \mathbf{J}_{2 a}\left(d_{2 a}\right) \cdot \mathbf{M}_{2 a \leftarrow 3} \mathbf{x}, \\
\mathbf{M}_{0 \leftarrow 2 a} \cdot \mathbf{J}_{2 b}\left(\theta_{2 b}\right) \cdot \mathbf{M}_{2 b \leftarrow 3} \mathbf{x}, \\
\mathbf{M}_{0 \leftarrow 2 b} \cdot \mathbf{J}_{3}\left(\theta_{3}\right) \cdot \mathbf{x}
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{c}
\theta_{1} \\
d_{2 a} \\
\theta_{2 b} \\
\theta_{3}
\end{array}\right]
$$

(each entry here is a column of the matrix)

$$
\mathrm{d} \mathbf{p}=\mathbf{J} \cdot \mathrm{dq}
$$

