Foundations of Computer Graphics

 (Fall 2012)CS 184, Lecture 26: Global Illumination
http://inst.eecs.berkeley.edu/~cs184

Illumination Models

So far considered mainly local illumination

- Light directly from light sources to surface

Global Illumination: multiple bounces
" Already ray tracing: reflections/refractions

Some images courtesy Henrik Wann Jensen

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
" As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

The material in this part of the lecture is fairly advanced and
not covered in any of the texts. The slides should be fairly complete. This section is fairly short, and I hope some of you will get some insight into solutions for general global illumination

Rendering Equation as Integral Equation

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right)
$$

Reflected Light	$f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$			
(Output Image)	Emission	Reflected	BRDF	Cosine of
UNKNOWN	KNOWN	Light		Incident angle

UNKOWN KNOWN

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

$$
l(u)=e(u)+\int l(v) K(u, v) d v
$$

Kernel of equation

Linear Operator Equation

$$
\begin{aligned}
l(u) & =e(u)+\int l(v) \underset{\text { Kernel of equation }}{\text { Light Transport Operator }} \boldsymbol{K (u , v) d v} \\
L & =E+K L
\end{aligned}
$$

Can be discretized to a simple matrix equation [or system of simultaneous linear equations] (L, E are vectors, K is the light transport matrix)

Solution Techniques

All global illumination methods try to solve (approximations of) the rendering equation

- Too hard for analytic solution: numerical methods
- General theory of solving integral equations

Radiosity (next lecture; usually diffuse surfaces)

- General class numerical finite element methods (divide surfaces in scene into a finite set elements or patches)
- Set up linear system (matrix) of simultaneous equations
- Solve iteratively

Ray Tracing and extensions

- General class numerical Monte Carlo methods
- Approximate set of all paths of light in scene

$$
L=E+K L
$$

$I L-K L=E$
$(I-K) L=E$
$L=(I-K)^{-1} E$
Binomial Theorem

$$
\begin{aligned}
& L=\left(I+K+K^{2}+K^{3}+\ldots\right) E \\
& L=E+K E+K^{2} E+K^{3} E+.
\end{aligned}
$$

Ray Tracing

(Two bounce indirect) [Caustics etc]

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
" As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Change of Variables

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r} \cos \theta_{i} d \omega_{i}\right.
$$

Integral over angles sometimes insufficient. Write integral
in terms of surface radiance only (change of variables)

$$
d \omega_{i}=\frac{d A^{\prime} \cos \theta_{0}}{\left|x-x^{\prime}\right|^{2}}
$$

Rendering Equation: Standard Form

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r} \cos \theta_{i} d \omega_{i}\right.
$$

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all } x^{\prime} \text { visible to } x} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}} d A^{\prime}$
Domain integral awkward. Introduce binary visibility fn V $L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all surfaces } x^{\prime}} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A^{\prime}$ $\begin{aligned} & \text { Same as equation 2.52 Cohen Wallace. It swaps primed } \\ & \text { And unprimed, omits angular args of BRDF, - sign. }\end{aligned} d \omega_{i}=\frac{d A^{\prime} \cos \theta_{0}}{\left|x-x^{\prime}\right|^{2}}$

$$
G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right)=\frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
$$

Overview

- Theory for all methods (ray trace, radiosity)
- We derive Rendering Equation [Kajiya 86]
- Major theoretical development in field
- Unifying framework for all global illumination
- Discuss existing approaches as special cases

