Foundations of Computer Graphics (Fall 2012)

CS 184, Lecture 3: Transformations 1
http://inst.eecs.berkeley.edu/~cs184

To Do

- Submit HW Ob
- Start looking at HW 1 (simple, but need to think)
" Axis-angle rotation and gluLookAt most useful
- Probably only need final results, but try understanding derivations.
- Problems in text help understanding material. Usually, we have review sessions per unit, but this one before midterm

General Idea

- Object in model coordinates
- Transform into world coordinates
- Represent points on object as vectors
- Multiply by matrices
- Demos with applet

Outline

- 2D transformations: rotation, scale, shear
- Composing transforms
- 3D rotations
- Translation: Homogeneous Coordinates (next time)
- Transforming Normals (next time)

(Nonuniform) Scale

$\operatorname{Scale}\left(s_{x}, s_{y}\right)=\left(\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right) \quad S^{-1}=\left(\begin{array}{cc}s_{x}^{-1} & 0 \\ 0 & s_{y}^{-1}\end{array}\right)$

$$
\left(\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
s_{x} x \\
s_{y} y \\
s_{z} z
\end{array}\right)
$$

transformation game.jar

- Linear $R(X+Y)=R(X)+R(Y)$
- Commutative

Shear
Shear $=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) \quad S^{-1}=\left(\begin{array}{cc}1 & -a \\ 0 & 1\end{array}\right)$
\square

Outline

- 2D transformations: rotation, scale, shear
- Composing transforms
- 3D rotations
- Translation: Homogeneous Coordinates
- Transforming Normals

Composing Transforms

- Often want to combine transforms
- E.g. first scale by 2 , then rotate by 45 degrees
- Advantage of matrix formulation: All still a matrix
- Not commutative!! Order matters

E.g. Composing rotations, scales

$$
\begin{aligned}
& x_{3}=R x_{2} \quad x_{2}=S x_{1} \\
& x_{3}=R\left(S x_{1}\right)=(R S) x_{1} \\
& x_{3} \neq S R x_{1} \\
& \text { transformation game.jar }
\end{aligned}
$$

Outline

- 2D transformations: rotation, scale, shear
- Composing transforms
- 3D rotations
- Translation: Homogeneous Coordinates
- Transforming Normals

Rotations in 3D

- Rotations about coordinate axes simple

$$
\begin{array}{ll}
R_{z}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \\
R_{y}=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
\text { - Always linear, orthogonal } & R^{T} R=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
\text { " Rows/cols orthonormal } & R(X+Y)=R(X)+R(Y)
\end{array}
$$

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
\begin{aligned}
& R_{u w v}=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} Z \\
& R p=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right)\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=?\left(\begin{array}{l}
u \bullet p \\
v \bullet p \\
w \bullet p
\end{array}\right)
\end{aligned}
$$

Geometric Interpretation 3D Rotations

$$
R p=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right)\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=\left(\begin{array}{l}
u \bullet p \\
v \bullet p \\
w \bullet p
\end{array}\right)
$$

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors
- Effectively, projections of point into new coord frame
- New coord frame uvw taken to cartesian components xyz
- Inverse or transpose takes xyz cartesian to uvw

Non-Commutativity

- Not Commutative (unlike in 2D)!!
- Rotate by x, then y is not same as y then x
- Order of applying rotations does matter
- Follows from matrix multiplication not commutative - R1 * R2 is not the same as R2 *R1
- Demo: HW1, order of right or up will matter

Arbitrary rotation formula

- Rotate by an angle θ about arbitrary axis a
- Homework 1: must rotate eye, up direction
- Somewhat mathematical derivation but useful formula
- Problem setup: Rotate vector b by θ about a
- Helpful to relate b to X, a to Z, verify does right thing
- For HW1, you probably just need final formula

Axis-Angle: Putting it together

$$
\begin{aligned}
(b \backslash a)_{R O T} & =\left(I_{3 \times 3} \cos \theta-a a^{T} \cos \theta\right) b+\left(A^{*} \sin \theta\right) b \\
(b \rightarrow a)_{R O T} & =\left(a a^{T}\right) b \\
R(a, \theta) & =I_{3 \times 3} \cos \theta+a a^{T}(1-\cos \theta)+A^{*} \sin \theta
\end{aligned}
$$

Axis-Angle: Putting it together
$(b \backslash a)_{R O T}=\left(I_{3 \times 3} \cos \theta-a a^{T} \cos \theta\right) b+\left(A^{*} \sin \theta\right) b$
$(b \rightarrow a)_{R O T}=\left(a a^{T}\right) b$
$R(a, \theta)=I_{3 \times 3} \cos \theta+a a^{T}(1-\cos \theta)+A^{\prime} \sin \theta$
$R(a, \theta)=\cos \theta\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+(1-\cos \theta)\left(\begin{array}{ccc}x^{2} & x y & x z \\ x y & y^{2} & y z \\ x z & y z & z^{2}\end{array}\right)+\sin \theta\left(\begin{array}{ccc}0 & -z & y \\ z & 0 & -x \\ -y & x & 0\end{array}\right)$
$(x y z)$ are cartesian components of a

