Foundations of Computer Graphics

(Fall 2012)
CS 184, Lecture 4: Transformations 2
http://inst.eecs.berkeley.edu/~cs184

To Do

- Start doing HW 1
" Time is short, but needs only little code [Due Wed Sep 12]
Ask questions or clear misunderstandings by next lecture
- Specifics of HW 1

Last lecture covered basic material on transformations in 2D
Likely need this lecture to understand full 3D transformations

- Last lecture had full derivation of 3D rotations. You only need final formula
- gluLookAt derivation this lecture helps clarifying some ideas
- Read and post on Piazza re questions

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
" gluLookAt (quickly)

Translation

- E.g. move x by +5 units, leave y, z unchanged
- We need appropriate matrix. What is it?
$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\quad ? \quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x+5 \\ y \\ z\end{array}\right)\right.$
Transformations game demo

Homogeneous Coordinates

" Add a fourth homogeneous coordinate ($\mathrm{w}=1$)

- 4x4 matrices very common in graphics, hardware
- Last row always 0001 (until next lecture)
$\left(\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime}\end{array}\right)=\left(\begin{array}{llll}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)=\left(\begin{array}{c}x+5 \\ y \\ z \\ 1\end{array}\right)$

Representation of Points (4-Vectors)
Homogeneous coordinates

- Divide by $4^{\text {th }}$ coord (w) to get $P=$ (inhomogeneous) point
- Multiplication by w > 0, no effect
$=\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{c}x / w \\ y / w \\ z / w \\ 1\end{array}\right)$
- Assume $w \geq 0$. For $w>0$, normal finite point. For w = 0, point at infinity (used for vectors to stop translation)

Advantages of Homogeneous Coords

- Unified framework for translation, viewing, rot...
- Can concatenate any set of transforms to 4×4 matrix
- No division (as for perspective viewing) till end
- Simpler formulas, no special cases
- Standard in graphics software, hardware

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
" gluLookAt (quickly)

Outline
- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)
Slides for this part courtesy Prof. O' Brien

Transformations game demo

Drawing a Scene Graph

Normals

- Important for many tasks in graphics like lighting
" Do not transform like points e.g. shear
- Algebra tricks to derive correct transform

Incorrect to transform like points

- Draw scene with pre-and-post-order traversal
- Apply node, draw children, undo node if applicable
- Nodes can carry out any function
- Geometry, transforms, groups, color,
" Requires stack to "undo" post children
- Transform stacks in OpenGL
- Caching and instancing possible
- Instances make it a DAG, not strictly a tree

Finding Normal Transformation

$$
\begin{gathered}
t \rightarrow M t \quad \begin{array}{c}
n \rightarrow Q n \quad Q=? \\
n^{\top} t=0
\end{array} \\
n^{\top} Q^{\top} M t=0 \Rightarrow Q^{\top} M=l \\
Q=\left(M^{-1}\right)^{T}
\end{gathered}
$$

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
" gluLookAt (quickly)
Coordinate Frames: In general
- Can differ both origin and orientation (e.g. 2 people)
- One good example: World, camera coord frames (H1)

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
R_{u v w}=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} Z
$$

Axis-Angle formula (summary)

$$
\begin{aligned}
&(b \backslash a)_{R O T}=\left(I_{3 \times 3} \cos \theta-a a^{T} \cos \theta\right) b+\left(A^{*} \sin \theta\right) b \\
&(b \rightarrow a)_{R O T}=\left(a a^{T}\right) b \\
& R(a, \theta)=I_{3 \times 3} \cos \theta+a a^{T}(1-\cos \theta)+A^{*} \sin \theta \\
& R(a, \theta)=\cos \theta\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+(1-\cos \theta)\left(\begin{array}{ccc}
x^{2} & x y & x z \\
x y & y^{2} & y z \\
x z & y z & z^{2}
\end{array}\right)+\sin \theta\left(\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right)
\end{aligned}
$$

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

Camera is at eye, looking at center, with the up direction being up

- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Constructing a coordinate frame?

We want to associate \mathbf{w} with \mathbf{a}, and \mathbf{v} with \mathbf{b}

- But a and b are neither orthogonal nor unit norm
- And we also need to find \mathbf{u}

$$
\begin{aligned}
w & =\frac{a}{\|a\|} \\
u & =\frac{b \times w}{\|b \times w\|} \\
v & =w \times u
\end{aligned}
$$

Constructing a coordinate frame

$$
w=\frac{a}{\|a\|} \quad u=\frac{b \times w}{\|b \times w\|} \quad v=w \times u
$$

- We want to position camera at origin, looking down -Z dirn
- Hence, vector a is given by eye - center
- The vector b is simply the up vector/Up vector

Steps

Geometric Interpretation 3D Rotations

" gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
R_{u w v}=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} Z
$$

Steps
- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Translation

" gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
. Camera is at eye, looking at center, with the up direction being up

- Cannot apply translation after rotation
- The translation must come first (to bring camera to origin) before the rotation is applied

gluLookAt final form

