Foundations of Computer Graphics (Fall 2012)

CS 184, Lecture 5: Viewing http://inst.eecs.berkeley.edu/~cs184

To Do

- Questions/concerns about assignment 1?
- Remember it is due Sep 12. Ask me or TAs re problems

Motivation

- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
- Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

Demo (Projection Tutorial)

- Nate Robbins OpenGL tutors
- Projection tutorial Download others

tovy aspect zNear zFa

gluPerspective(60.0 , 1.00 , 1.0 , 1.00); gluLoskAt(0.00 , 0.00 , 2.00 , <- eye 0.00 , 0.00 , 0.00 , <- center 0.00 , 1.00 , 0.00); <- up Click on the arguments and move the mouse to modify

What we' ve seen so far

- Transforms (translation, rotation, scale) as 4x4 homogeneous matrices
- Last row always 0 0 0 1. Last w component always 1
- For viewing (perspective), we will use that last row and w component no longer 1 (must divide by it)

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Projections

- To lower dimensional space (here 3D -> 2D)
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Perspective Projection

- Most common computer graphics, art, visual system
- Further objects are smaller (size, inverse distance)
- Parallel lines not parallel; converge to single point

In Matrices								
 Note negation of z coord (focal plane –d) 								
 (Only) last row affected (no longer 0 0 0 1) 								
w coord will no longer = 1. Must divide at end								
(1	0	0	0)			
P =	0	1	0	0				
P =	0	0	1	0				
	0	0	$-\frac{1}{d}$	0				
			u)			

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

- Fovy, aspect control fov in x, y directions
- zNear, zFar control viewing frustum

In Matrices										
 Simplest form: 	1 aspect	0	0	0						
P =	0 0	1 0	0 1	0 0						
	0	0	$-\frac{1}{d}$	0						
 Aspect ratio taken into account 										
 Homogeneous, simpler to multiply through by d 										
 Must map z vals based on near, far planes (not yet) 										

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Mapping of Z is nonlinear

$$\begin{array}{c} Az+B\\ -z \end{array} = -A - \frac{E}{z} \end{array}$$

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths (10cm 100m)
- Disadvantage: depth resolution not uniform
- More close to near plane, less further away
- Common mistake: set near = 0, far = infty. Don't do this. Can't set near = 0; lose depth resolution.
- We discuss this more in review session

