Foundations of Computer Graphics

(Fall 2012)
CS 184, Lecture 5: Viewing
http://inst.eecs.berkeley.edu/~cs184

To Do

- Questions/concerns about assignment 1?
- Remember it is due Sep 12. Ask me or TAs re problems
\qquad
- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
" Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

Demo (Projection Tutorial)

\qquad

- Derivation of gluPerspective (handout: gIFrustum)
- Orthographic projection (simpler)
- Perspective projection, basic idea
- Brief discussion of nonlinear mapping in z
- For viewing (perspective), we will use that last row and w component no longer 1 (must divide by it)
allu wo colmporiertito iol

Outline

- Transforms (translation, rotation, scale) as 4×4 homogeneous matrices
" Last row always 000 1. Last w component always 1

$$
5+2
$$

Projections

- To lower dimensional space (here 3D -> 2D)
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)

- Simply project onto xy plane, drop z coordinate

In general

- We have a cuboid that we want to map to the normalized or square cube from $[-1,+1]$ in all axes
- We have parameters of cuboid (l,r ; t,b; n,f)
 Translate
 Scale

Caveats

Final Result

- Looking down $-z, f$ and n are negative ($n>f$)
- OpenGL convention: positive n, f, negate internally

Outline
- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: gIFrustum)
- Brief discussion of nonlinear mapping in z

Perspective Projection

- Most common computer graphics, art, visual system
- Further objects are smaller (size, inverse distance)
- Parallel lines not parallel; converge to single point

Center of projection
(camera/eye location)
Slides inspired by Greg Humphreys

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Remember projection tutorial

Overhead View of Our Screen

$$
\theta=\frac{f o v y}{2} \quad d=\cot \theta
$$

In Matrices

- Simplest form:

$$
P=\left(\begin{array}{cccc}
\frac{1}{\text { aspect }} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{array}\right)
$$

- Aspect ratio taken into account
- Homogeneous, simpler to multiply through by d
- Must map z vals based on near, far planes (not yet)

Z mapping derivation

$$
\left(\begin{array}{cc}
A & B \\
-1 & 0
\end{array}\right)\binom{z}{1}=? \quad\binom{A z+B}{-z}=-A-\frac{B}{z}
$$

" Simultaneous equations?

$$
\begin{array}{rlrl}
-A+\frac{B}{n} & =-1 & A & =-\frac{f+n}{f-n} \\
-A+\frac{B}{f} & =+1 & B & =-\frac{2 f n}{f-n}
\end{array}
$$

Mapping of \mathbf{Z} is nonlinear

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: gIFrustum)
- Brief discussion of nonlinear mapping in z

$$
\left.\begin{array}{c}
A z+B \\
-z
\end{array}\right)=-A-\frac{B}{z}
$$

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths (10cm - 100m)
- Disadvantage: depth resolution not uniform
- More close to near plane, less further away
- Common mistake: set near = 0, far = infty. Don't do this. Can' t set near $=0$; lose depth resolution.
- We discuss this more in review session

