Foundations of Computer Graphics

(Fall 2012)
CS 184, Lecture 9: Curves 1
http://inst.eecs.berkeley.edu/~cs184

Motivation

- How do we model complex shapes?
" In this course, only 2D curves, but can be used to create interesting 3D shapes by surface of revolution, lofting etc
- Techniques known as spline curves
- This unit is about mathematics required to draw these spline curves, as in HW 3
- History: From using computer modeling to define car bodies in auto-manufacturing. Pioneers are Pierre Bezier (Renault), de Casteljau (Citroen)

Course Outline

- 3D Graphics Pipeline

Outline of Unit

- Bezier curves
- deCasteljau algorithm, explicit form, matrix form
- Polar form labeling (next time)
- B-spline curves (next time)
- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4x4 matrix for cubics
- Properties: Advantages and Disadvantages

Bezier Curve: (Desirable) properties

- Interpolates, is tangent to end points
- Curve within convex hull of control polygon

Control points (all that user specifies, edits)

deCasteljau: Linear Bezjer Curve

- Just a simple linear combination or interpolation (easy to code up, very numerically stable)

$$
F(u)=(1-u) P 0+u P 1
$$

deCasteljau: Cubic Bezier Curve

Cubic
Degree 3, Order 4 $F(0)=P 0, F(1)=P 3$

$F(u)=(1-u)^{3} \mathrm{PO}+3 \mathrm{u}(1-\mathrm{u})^{2} \mathrm{P} 1$ $+3 u^{2}(1-u) P 2+u^{3} P 3$

DeCasteljau Implementation

Input: Control points C_{i} with $0 \leq i \leq n$ where n is the degree.
Output: $f(u)$ where u is the parameter for evaluation
1 for (level $=n$; level ≥ 0; level --$)\{$
2 if (level $==n)\{/ /$ Initial control points
$3 \quad \forall i: 0 \leq i \leq n: p_{i}^{\text {level }}=C_{i}$; continue ; $\}$
for ($i=0 ; i \leq$ level $; i++$)
$p_{i}^{\text {level }}=(1-u) * p_{i}^{\text {level }+1}+u * p_{i+1}^{\text {level }+1}$;
$\left.\begin{array}{l}5 \\ 6 \\ 7\end{array}\right\}$
$7 f(u)=p_{0}^{0}$

- Can be optimized to do without auxiliary storage

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
- Properties: Advantages and Disadvantages

Recap formulae

- Linear combination of basis functions

Linear: $\quad F(u)=P_{0}(1-u)+P_{1} u$
Quadratic: $F(u)=P_{0}(1-u)^{2}+P_{1}[2 u(1-u)]+P_{2} u^{2}$
Cubic: $\quad F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3}$
Degree n: $F(u)=\sum_{k} P_{k} B_{k}^{n}(u)$
$B_{k}^{n}(u)$ areBernstein-Bezier polynomials

- Explicit form for basis functions? Guess it?

Recap formulae

- Linear combination of basis functions

Linear: $\quad F(u)=P_{0}(1-u)+P_{1} u$
Quadratic: $F(u)=P_{0}(1-u)^{2}+P_{1}[2 u(1-u)]+P_{2} u^{2}$
Cubic: $\quad F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3}$
Degree n: $F(u)=\sum_{k} P_{k} B_{k}^{n}(u)$
$B_{k}^{n}(u)$ areBernstein-Bezier polynomials

- Explicit form for basis functions? Guess it?
- Binomial coefficients in $[(1-u)+u]^{n}$

Cubic 4x4 Matrix (derive)

$$
F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3}
$$

$$
=\left(\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right)\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)
$$

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
- Properties: Advantages and Disadvantages

Properties (brief discussion)

- Demo of HW 3
- Interpolation: End-points, but approximates others
- Single piece, moving one point affects whole curve (no local control as in B-splines later)
- Invariant to translations, rotations, scales etc. That is, translating all control points translates entire curve
- Easily subdivided into parts for drawing (next lecture): Hence, Bezier curves easiest for drawing

