
1

Foundations of Computer Graphics
(Fall 2012)

CS 184, Lecture 9: Curves 1
http://inst.eecs.berkeley.edu/~cs184

Course Outline

§  3D Graphics Pipeline

 Modeling Animation Rendering

Graphics Pipeline

§  In HW 1, HW 2, draw, shade objects

§  But how to define geometry of objects?

§  How to define, edit shape of teapot?

§  We discuss modeling with spline curves
§  Demo of HW 3 solution

Curves for Modeling

Rachel Shiner, Final Project Spring 2010

Motivation

§  How do we model complex shapes?
§  In this course, only 2D curves, but can be used to create

interesting 3D shapes by surface of revolution, lofting etc

§  Techniques known as spline curves

§  This unit is about mathematics required to draw
these spline curves, as in HW 3

§  History: From using computer modeling to define
car bodies in auto-manufacturing. Pioneers are
Pierre Bezier (Renault), de Casteljau (Citroen)

Outline of Unit

§  Bezier curves

§  deCasteljau algorithm, explicit form, matrix form

§  Polar form labeling (next time)

§  B-spline curves (next time)

§  Not well covered in textbooks (especially as taught
here). Main reference will be lecture notes. If you
do want a printed ref, handouts from CAGD, Seidel

2

Bezier Curve (with HW2 demo)

§  Motivation: Draw a smooth intuitive curve (or
surface) given few key user-specified control points

Demo HW 3

Control points (all that user specifies, edits)

Smooth Bezier curve
(drawn automatically)

Control
polygon

Bezier Curve: (Desirable) properties

§  Interpolates, is tangent to end points

§  Curve within convex hull of control polygon

Control points (all that user specifies, edits)

Smooth Bezier curve
(drawn automatically)

Control
polygon

Issues for Bezier Curves

 Main question: Given control points and constraints
(interpolation, tangent), how to construct curve?

§  Algorithmic: deCasteljau algorithm

§  Explicit: Bernstein-Bezier polynomial basis

§  4x4 matrix for cubics

§  Properties: Advantages and Disadvantages

deCasteljau: Linear Bezier Curve

§  Just a simple linear combination or interpolation
(easy to code up, very numerically stable)

 Linear (Degree 1, Order 2)
F(0) = P0, F(1) = P1

F(u) = ?
P0

P1

P0 P1

1-u u

F(u) = (1-u) P0 + u P1

F(0)

F(u)

F(1)

deCasteljau: Quadratic Bezier Curve

P0

P1

P2

Quadratic
Degree 2, Order 3

F(0) = P0, F(1) = P2
F(u) = ?

F(u) = (1-u)2 P0 + 2u(1-u) P1 + u2 P2

P0 P1 P2
1-u 1-u u u

1-u u

Geometric interpretation: Quadratic

u

u

u

1-u

1-u

3

Geometric Interpretation: Cubic

u

u

u

u

u

u

deCasteljau: Cubic Bezier Curve

P0

P1 P2

P3

Cubic
Degree 3, Order 4

F(0) = P0, F(1) = P3

P0 P1 P2 P3
1-u

1-u

1-u

u

u

u u

u

u

1-u

1-u

F(u) = (1-u)3 P0 +3u(1-u)2 P1
 +3u2(1-u) P2 + u3 P3

1-u

Summary: deCasteljau Algorithm

 Linear
 Degree 1, Order 2

F(0) = P0, F(1) = P1

P0

P1

P0 P1

1-u u
F(u) = (1-u) P0 + u P1

P0

P1

P2
Quadratic

Degree 2, Order 3
F(0) = P0, F(1) = P2
P0 P1 P2

F(u) = (1-u)2 P0 + 2u(1-u) P1 + u2 P2

1-u 1-u u u

1-u u

P0

P1 P2

P3
Cubic

Degree 3, Order 4
F(0) = P0, F(1) = P3

P0 P1 P2 P3
1-u

1-u

1-u

u

u

u u

u

u

1-u

1-u

F(u) = (1-u)3 P0 +3u(1-u)2 P1
 +3u2(1-u) P2 + u3 P3

1-u

DeCasteljau Implementation

§  Can be optimized to do without auxiliary storage

Summary of HW2 Implementation

Bezier (Bezier2 and Bspline discussed next time)
§  Arbitrary degree curve (number of control points)
§  Break curve into detail segments. Line segments for these
§  Evaluate curve at locations 0, 1/detail, 2/detail, … , 1
§  Evaluation done using deCasteljau

§  Key implementation: deCasteljau for arbitrary degree
§  Is anyone confused? About handling arbitrary degree?

§  Can also use alternative formula if you want
§  Explicit Bernstein-Bezier polynomial form (next)

§  Questions?

Issues for Bezier Curves

 Main question: Given control points and constraints
(interpolation, tangent), how to construct curve?

§  Algorithmic: deCasteljau algorithm

§  Explicit: Bernstein-Bezier polynomial basis

§  4x4 matrix for cubics

§  Properties: Advantages and Disadvantages

4

Recap formulae

§  Linear combination of basis functions

§  Explicit form for basis functions? Guess it?

Linear: F(u) = P0(1− u)+P1u

Quadratic: F(u) = P0(1− u)2 +P1[2u(1− u)]+P2u
2

Cubic: F(u) = P0(1− u)3 +P1[3u(1− u)2]+P2[3u2(1− u)]+P3u
3

Degree n: F(u) = Pk
k
∑ Bk

n(u)

Bk
n(u) areBernstein-Bezier polynomials

Recap formulae

§  Linear combination of basis functions

§  Explicit form for basis functions? Guess it?

§  Binomial coefficients in [(1-u)+u]n

Linear: F(u) = P0(1− u)+P1u

Quadratic: F(u) = P0(1− u)2 +P1[2u(1− u)]+P2u
2

Cubic: F(u) = P0(1− u)3 +P1[3u(1− u)2]+P2[3u2(1− u)]+P3u
3

Degree n: F(u) = Pk
k
∑ Bk

n(u)

Bk
n(u) areBernstein-Bezier polynomials

Summary of Explicit Form

 Bk

n(u) = n!
k!(n− k)!

(1− u)n−k uk

Linear: F(u) = P0(1− u)+P1u

Quadratic: F(u) = P0(1− u)2 +P1[2u(1− u)]+P2u
2

Cubic: F(u) = P0(1− u)3 +P1[3u(1− u)2]+P2[3u2(1− u)]+P3u
3

Degree n: F(u) = Pk
k
∑ Bk

n(u)

Bk
n(u) areBernstein-Bezier polynomials

Issues for Bezier Curves

 Main question: Given control points and constraints
(interpolation, tangent), how to construct curve?

§  Algorithmic: deCasteljau algorithm

§  Explicit: Bernstein-Bezier polynomial basis

§  4x4 matrix for cubics

§  Properties: Advantages and Disadvantages

Cubic 4x4 Matrix (derive)

F(u) = P0(1− u)3 +P1[3u(1− u)2]+P2[3u2(1− u)]+P3u
3

= u3 u2 u 1() M = ?
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

P0

P1

P2

P3

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Cubic 4x4 Matrix (derive)

F(u) = P0(1− u)3 +P1[3u(1− u)2]+P2[3u2(1− u)]+P3u
3

= u3 u2 u 1()
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

P0

P1

P2

P3

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

5

Issues for Bezier Curves

 Main question: Given control points and constraints
(interpolation, tangent), how to construct curve?

§  Algorithmic: deCasteljau algorithm

§  Explicit: Bernstein-Bezier polynomial basis

§  4x4 matrix for cubics

§  Properties: Advantages and Disadvantages

Properties (brief discussion)

§  Demo of HW 3

§  Interpolation: End-points, but approximates others

§  Single piece, moving one point affects whole curve
(no local control as in B-splines later)

§  Invariant to translations, rotations, scales etc. That is,
translating all control points translates entire curve

§  Easily subdivided into parts for drawing (next lecture):
Hence, Bezier curves easiest for drawing

