Relational Calculus

CS 186, Fall 2005
R&G, Chapter 4

We will occasionally use this
arrow notation unless there
is danger of no confusion.
Ronald Graham
Elements of Ramsey Theory

—
i Relational Calculus

relational calculus (DRC).
Calculus has variables, C
connectives and quantifiers.
— TRC: Variables range over (i.e., get bound to) tuples.
o Like SQL.
— DRC: Variables range over domain elements (= field values).
o Like Query-By-Example (QBE)
— Both TRC and DRC are simple subsets of first-order logic.
« We'll focus on TRC here
« Expressions in the calculus are called formulas.

Answer tuple is an assignment of constants to variables that
make the formula evaluate to fruve.

parison ops, logical

* Comes in two flavors: 7uple relational calculus (TRC) and Domain

ﬁ Tuple Relational Calculus

e Queryhas the form: {T| p(7T)}
— p(T) denotes a formula in which tuple
variable T appears.
* Answer is the set of all tuples T for
which the formula p(T) evaluates to true.
e Formulais recursively defined:
s»start with simple atomic formulas (get
tuples from relations or make comparisons of
values)

«build bigger and better formulas using the
logical connectives.

ﬁTRC Formulas

o An Atomic formula is one of the following:

RO Rel

RaopS.b

R.a op constant

opisoneof <>=527

e A formulacan be:
— an atomic formula
- 7P PLG PLY where p and q are formulas
— [R(pP(R)) where variable Ris a tuple variable
— OR(p(R)) where variable Ris a tuple variable

iFree and Bound Variables

¢ The use of quantifiers [X and[] X in a formula is
said to bind X in the formula.

— A variable that is not bound is free.
¢ Let us revisit the definition of a query:

-{T1 &N}

. There is an important restriction
— the variable 7that appears to the left of *|” must be
the only free variable in the formula (7).

— in other words, all other tuple variables must be
bound using a quantifier.

ﬁ Selection and Projection

¢ Find all sailors with rating above 7

{S IS OSailors OS.rating > 7}
— Modify this query to answer: Find sailors who are older
than 18 or have a rating under 9, and are called ‘Bob’.
¢ Find names and ages of sailors with rating above 7.

{S | 051 OSailors(S1.rating > 7
008S.sname = S1.sname

0S.age = S1.age)}

— Note: S is a tuple variable of 2 fields (i.e. {S}is a
projection of Sailors)

« only 2 fields are ever mentioned and Sis never used to range
over any relations in the query.

ﬁ Joins

Find sailors rated > 7 who've reserved boat
#103
{S | SOSailors O S.rating >7 0
[(R(ROReserves [IR.sid = S.sid
OR.bid = 103)}

Note the use of Tto find a tuple in Reserves
that joins with’ the Sailors tuple under
consideration.

ﬁ Joins (continued)

{S | SOSailors OS.rating > 7 O
[R(ROReserves O R.sid = S.sid
0 [B(BOBoats [OB.bid = R.bid
0 B.color = ‘red”))}

Find sailors rated > 7 who've reserved a red boat

* Observe how the parentheses control the scope of
each quantifier’s binding.

¢ This may look cumbersome, but it's not so different
from SQL!

—
iDivision (makes more sense here???)

Find sailors who've reserved all boats
(hint, use [0

{S | SOSailors O
OBOBoats ((R[OReserves
(S.sid = R.sid
OB.bid = R.bid))}
¢ Find all sailors S'such that for all tuples Bin Boats

there is a tuple in Reserves showing that sailor Shas
reserved B.

i Division — a trickier example...
Find sailors who've reserved all Red boats

{S | SOSailors O
UB [Boats (B.color = ‘red’ =
[R(ROReserves [S.sid = R.sid

O0B.bid = R.bi
Alternatively... bid bid))}

{S | SOSailors [
0B O Boats (B.color #‘red’ [
[R(ROReserves [S.sid = R.sid
0B.bid = R.bid))}

ﬁ a = b is the same as -a b

b o If ais true, b must
T F be true!
—Ifaistrueand b is
false, the implication
a evaluates to false.
] o If ais not true, we
F T T don’t care about b
— The expression is
always true.

—
i Unsafe Queries, Expressive Power

« [Isyntactically correct calculus queries that have
an infinite number of answers! Unsafe queries.

T &g {SHSD Sailors”

— Solution???? Don't do that!

* Expressive Power (Theorem due to Codd):

— every query that can be expressed in relational algebra
can be expressed as a safe query in DRC / TRC; the
converse is also true.

* Relational Completeness: Query language (e.g.,
SQL) can express every query that is expressible in
relational algebra/calculus. (actually, SQL is more
powerful, as we will see...)

ﬁ Summary

The relational model has rigorously defined query
languages — simple and powerful.

Relational algebra is more operational
— useful as internal representation for query evaluation plans.
Relational calculus is non-operational

— users define queries in terms of what they want, not in
terms of how to compute it. (Declarative)

* Several ways of expressing a given query
— a query optimizer should choose the most efficient version.
¢ Algebra and safe calculus have same expressive power
— leads to the notion of re/ational completeness.

ﬁ

Addendum: Use of [

e [x (P(x)) - is only true if P(x) is true for
every x in the universe
¢ Usually:
Ox ((x 0 Boats) = (x.color = “Red”)
* = logical implication,
a = b means that if a is true, b must be
true

a = b is the same as —a b

—
i Find sailors who've reserved all boats

{S | SOSailors O
OB((BOBoats) =
[(R(ROReserves OS.sid = R.sid
0B.bid = R.bid))}

« Find all sailors S'such that for each tuple B
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor Shas reserved it.

{S | SOSailors O
OB(-~ (BOBoats) O
[(R(ROReserves [1S.sid = R.sid
B.bid = R.bid))}

—
i ... reserved all red boats

{S | SOSailors O
OB((BOBoats [0 B.color = “red”) =
[R(ROReserves OS.sid = R.sid
0B.bid = R.bid))}

« Find all sailors S'such that for each tuple B
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor Shas reserved it.

{S | SOSailors O
OB(—~ (BOBoats) O (B.color # “red”) O
[(R(ROReserves [1S.sid = R.sid
0B.bid = R.bid))}

SQL: The Query
Language
Part 1

CS186, Fall 2005
R&G, Chapter 5

Life is just a bowl of queries.

-Anon
(not Forrest Gump)

ﬁReIationaI Query Languages

« A major strength of the relational model:
supports simple, powerful querying of data.
Two sublanguages:
+ DDL — Data Definition Language
— define and modify schema (at all 3 levels)
DML — Data Manipulation Language
— Queries can be written intuitively.
+ The DBMS is responsible for efficient evaluation.
— The key: precise semantics for relational queries.
— Allows the optimizer to re-order/change operations,
and ensure that the answer does not change.
— Internal cost model drives use of indexes and choice
of access paths and physical operators.

ﬁThe SQL Query Language

¢ The most widely used relational query language.
— Current standard is SQL-1999
* Not fully supported yet
* Introduced “Object-Relational” concepts (and lots more)
— Many of which were pioneered in Postgres here at Berkeley!
— SQL-200x is in draft
— SQL-92 is a basic subset
* Most systems support a medium
— PostgreSQL has some “unique” aspects
* as do most systems.
— XML support/integration is the next challenge for SQL
(more on this in a later class).

1 DDL — Create Table

* CREATE TABLE table_name
({ column_name data_type [DEFAULT default_expr] |
column_constraint [, ...]]| table_constraint} [, ...]1)

« Data Types (PostgreSQL) include:
character(n) — fixed-length character string
character varying(n) — variable-length character string
smallint, integer, bigint, numeric, real, double precision
date, time, timestamp, ...
serial - unique ID for indexing and cross reference

* PostgreSQL also allows OIDs, arrays, inheritance, rules...

conformance to the SQL-1999 standard is variable so we won't use
these in the project.

i Create Table (w/column constraints)

* CREATE TABLE table_name
({ column_name data_type [DEFAULT default_expr] [
column_constraint [, ... 1] | table_constraint } [, ...])

Column Constraints:
« [CONSTRAINT constraint_name]
{ NOT NULL | NULL | UNIQUE | PRIMARY KEY | CHECK
(expression) |
REFERENCES reftable [(refcolumn)] [ON DELETE action] [
ON UPDATE action] }
action is one of:
NO ACTION, CASCADE, SET NULL, SET DEFAULT
expression for column constraint must produce a boolean result
and reference the related column’s value only.

i Create Table (w/table constraints)

* CREATE TABLE table_name
({ column_name data_type [DEFAULT default_expr] [
column_constraint [, ... 1] | table_constraint} [, ...])

Table Constraints:

« [CONSTRAINT constraint_name]
{ UNIQUE (column_name [, ...])|
PRIMARY KEY (column_namef[,...])|
CHECK (expression) |

FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(
refcolumn [, ...])][ON DELETE action] [ON UPDATE
action]}

Here, expressions, keys, etc can include multiple columns

e Create Table (Examples)
CREATE TABLE films (

code CHAR(5) PRIMARY KEY,
title VARCHAR(40),

did DECIMAL(3),

date_prod DATE,

kind VARCHAR(10),

CONSTRAINT production UNIQUE(date_prod)
FOREIGN KEY did REFERENCES distributors
ON DELETE NO ACTION
)
CREATE TABLE distributors (
did DECIMAL(3) PRIMARY KEY,
name VARCHAR(40)
CONSTRAINT conl CHECK (did > 100 AND name <>"'")
)i

Wl The sQL DML

¢ Single-table queries are straightforward.

e To find all 18 year old students, we can write:

SELECT * sid |name | login |age |gpa
FROM Students S [53666 |Jones jones@cs | 18 |3.4
WHERE S.age=18 53688 |Smith [smith@ee | 18 |3.2

« To find just names and logins, replace the first line:
SELECT S.name, S.login

i Querying Multiple Relations

¢ Can specify a join over two tables as follows:

SELECT S.name, E.cid
FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade=‘B'

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

iBasic SQL Query

o relation-/ist . A list of relation names
— possibly with a range-variable after each name
e target-/ist: A list of attributes of tables in relation-/ist

sid cid grade sid |name | login |age gpa e qualification : Comparisons combined using AND, OR
53831 Carnaticl0l C 53666 |Jones [jones@cs |18 |3.4 and NOT.
53831 Reggae203 B 53688 |Smith |smith@ee | 18 |3.2 — Comparisons are Attr op const or Attrl op Attr2, where op is
53650 Topologyll2 A N i | oneof < > = <. > #
53666 History105 B ote: obvious R -
sory o referential y e DISTINCT: optional keyword indicating that the
integrity answer should not contain duplicates.
result = | Sname | E.cid constraints have —In SQL SELECT, the default is that duplicates are
Jones | History105 been used here. not eliminated! (Result is called a “multiset”)
ﬁ Query Semantics ﬁ Step 1 — Cross Product

e Semantics of an SQL query are defined in terms of

the following conceptual evaluation strategy:

1. do FROM clause: compute cross-product of

tables (e.g., Students and Enrolled).
2. do WHERE clause: Check conditions, discard
tuples that fail. (called “selection”).
3. do SELECT clause: Delete unwanted fields.
(called “projection”).

4. If DISTINCT specified, eliminate duplicate rows.

e Probably the least efficient way to compute a

query!

— An optimizer will find more efficient strategies to

get the same

answer.

Ssd |Sname| Slogin |Sage|Sgpa |E.sid E.cid E.grade
53666 |Jones |jones@cs |18 |3.4 53831 | Carnatic101
53666 |Jones |jones@cs |18 |34 |53832 |Reggae203
53666 |Jones |jones@cs |18 |3.4 53650 | Topology112
53666 |Jones |jones@cs |18 |34 53666 | History105
53688 |Smith |smith@ee |18 |3.2 53831 |Carnatic101
53688 |Smith |smith@ee (18 |[3.2 53831 | Reggae203
53688 |Smith |smith@ee |18 |3.2 53650 | Topology112
53688 |Smith |smith@ee |18 |3.2 53666 | History105

WH>WOW>WO

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B'

ﬁ Step 2) Discard tuples that fail predicate

6) jones@cs [18 |34 (53666 [History105
— N 1

ﬁ Step 3) Discard Unwanted Columns

[Sname| Siogn [Sage[Sgpa [E5d | Eod [Farade

e | pisory 105 |

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B'

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B'

ﬁ Reserves | Sid | bid d_ay
Now the Details 22 |101 |10/10/96

e wil use th 95 |103 |11/12/96
e will use these ;1< = :
instances of ~'°"* |sd |sname |rating |age

relations in our 22 |Dustin | 7 45.0
examples. 31 |Lubber| 8 |555
95 |Bob 3 63.5

(Question: If the key

for the Reserves Boats |bid |[bname |color
relation contained 101 | Interlake |blue
only the attributes

sidand bid, how 102 Interlake red
would the 103 |Clipper |green
semantics differ?) 104 [Marine |red

i Example Schemas

CREATE TABLE Sailors (sid INTEGER PRIMARY KEY,
sname CHAR(20),rating INTEGER,age REAL)

CREATE TABLE Boats (bid INTEGER PRIMARY KEY,
bname CHAR (20), color CHAR(10))

CREATE TABLE Reserves (

sid INTEGER REFERENCES Sailors,

bid INTEGER, day DATE,

PRIMARY KEY (sid, bid, day),
FOREIGN KEY (bid) REFERENCES Boats)

ﬁAnother Join Query

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103
(sid) [sname |rating|age |(sid) bid |day
22 |dustin | 7 [45.0| 22 |101 {10/10/96
22 |dustin| 7 [45.0| 95 |103 (11/12/96
31 |lubber | 8 |55.5| 22 |101 {10/10/96
31 |lubber | 8 |55.5| 95 |103 |11/12/96
95 |Bob 3 [63.5| 22 |101 |10/10/96
95 |Bob 3 [63.5] 95 |103 |11/12/96

i Some Notes on Range Variables

¢ Can associate “range variables” with the tables in
the FROM clause.
— saves writing, makes queries easier to understand

¢ Needed when ambiguity could arise.

— for example, if same table used multiple times in same
FROM (called a “self-join”)

SELECT sname
FROM Sailors,Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103

Can be SELECT S.sname
rewritten using FROM Sailors S, Reserves R
range variables as: |WHERE S.sid=R.sid AND bid=103

i More Notes

e Here's an example where range variables are
required (self-join example):

SELECT X.sname, X.age, y.snhame, y.age
FROM Sailors x, Sailors y
WHERE Xx.age > y.age

* Note that target list can be replaced by “*” if
you don't want to do a projection:

SELECT *
FROM Sailors x
WHERE x.age > 20

p—
i Find sailors who've reserved at least one
boat

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

e Would adding DISTINCT to this query make a
difference?

e What is the effect of replacing S.sid by S.sname
in the SELECT clause?

— Would adding DISTINCT to this variant of the query
make a difference?

= -
i Expressions

e Can use arithmetic expressions in SELECT clause
(plus other operations we'll discuss later)

e Use AS to provide column names

SELECT S.age, S.age-5 AS agel, 2*S.age AS age2
FROM Sailors S
WHERE S.sname = ‘Dustin’

¢ Can also have expressions in WHERE clause:

SELECT Sl.sname AS namel, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*Sl.rating = S2.rating - 1

e
iString operations
*SQL also supports some string operations
*"LIKE” is used for string matching.

SELECT S.age, S.age-5 AS agel, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%b’

*_’ stands for any one character and %’ stands for
0 or more arbitrary characters.

="=Find sid’s of sailors who've reserved a red or a
reen boat
e UNION: Can be used to compute the union of any
two wnion-compatible sets of tuples (which are
themselves the result of SQL queries).

SELECT R.sid

FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color=‘red’OR B.color=‘green’)

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color="‘red’
UNION
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘green’

—
Find sid’s of sailors who've reserved a red and a
green boat

o If we simply replace OR by AND in the previous
query, we get the wrong answer. (Why?)

¢ Instead, could use a self-join:

SELECT R1l.sid
FROM Boats Bl, Reserves R1,
Boats B2, Reserves R2
WHERE R1.sid=R2.sid
AND R1.bid=Bl.bid
AND R2.bid=B2.bid
AND (Bl.color=‘red’ AND B2.color=‘green’)

i AND Continued...

Key field!

o INTERSECT:discussed in A
book. Can be used to SELECT S.s1 d
compute the intersection |FROM Sailors S, Boats B,

of any two wnion- Reserves R

compatible sets of WHERE S.sid=R.sid

tuples. AND R.bid=B.bid

Also in text: ExC AND B.color=‘red’
. so in text: EXCEPT INTERSECT

(sometimes called MINUS)

« IncludedinthesqQL/92 |SELECT S.sid
standard, but many FROM Sailors S, Boats B,

systems don't support Reserves R

them. WHERE S.sid=R.sid

— But PostgreSQL does! AND R.bid=B.bid
AND B.color=‘green’

ﬁ Nested Queries

+ Powerful feature of SQL: WHERE clause can itself
contain an SQL query!
— Actually, so can FROM and HAVING clauses.

Names of sailors who've reserved boat #103:

SELECT S.snhame

FROM Sailors s

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

« To find sailors who've notreserved #103, use NOT IN.
¢ To understand semantics of nested queries:

— think of a nested /oops evaluation: For each Sailors tuple,
check the qualification by computing the subquery.

—
i Nested Queries with Correlation

Find names of sailors who've reserved boat #103:

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)
« EXISTS is another set comparison operator, like IN.
¢ Can also specify NOT EXISTS

o If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103.

- UNIQUE checks for duplicate tuples in a subquery;
¢ Subquery must be recomputed for each Sailors tuple.
— Think of subquery as a function call that runs a query!

ﬁ

* We've already seen IN, EXISTS and UNIQUE. Can also use
NOT IN, NOT EXISTS and NOT UNIQUE.

¢ Also available: opANY, op ALL

* Find sailors whose rating is greater than that of some
sailor called Horatio:

More on Set-Comparison Operators

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname=‘Horatio’)

i Rewriting INTERSECT Queries Using IN

Find sid’s of sailors who ve reserved both a red and a green boat:

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
AND B.color=‘red’
AND R.sid IN (SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid=B2.bid
AND B2.color=‘green’)

o Similarly, EXCEPT queries re-written using NOT IN.

* How would you change this to find names (not sid's) of
Sailors who've reserved both red and green boats?

Division in SQL

Find sailors who've reserved all boats.

SELECT S.sname
FROM Sailors S Sailors S such that ...
WHERE NOT EXISTS (SELECT B.bid there is no boat B without
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R
WHERE R.bid=B.bid
AND R.sid=S.sid))

a Reserves tuple showing S reserved B

—

W Basic SQL Queries - Summary
¢ An advantage of the relational model is its well-

defined query semantics.

SQL provides functionality close to that of the

basic relational model.

— some differences in duplicate handling, null
values, set operators, etc.

Typically, many ways to write a query

— the system is responsible for figuring a fast
way to actually execute a query regardless of
how it is written.

¢ Lots more functionality beyond these basic
features. Will be covered in subsequent lectures.

= COUNT (¥)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
Aggregate Operators AVG ([DISTINCT] A)
« Significant extension of MAX (A)
relational algebra. MIN (A)
single column

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname="Bob”

ﬁ

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)

Aggregate Operators

MAX (A)
MIN (/.\)

AVG ([DISTINCT] A)

SELECT S.sname

FROM Sailors S

WHERE S.rating= (SELECT MAX(S2.rating)
FROM Sailors S2)

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

single column

GROUP BY and HAVING

* So far, we've applied aggregate operators to all
(qualifying) tuples.

— Sometimes, we want to apply them to each of several
groups of tuples.

« Consider: Find the age of the youngest sailor for
each rating level.
— In general, we don't know how many rating levels
exist, and what the rating values for these levels are!
— Suppose we know that rating values go from 1 to 10;
we can write 10 queries that look like this (!):
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

Fori=1,2,..,10:

¢ The first query is
incorrect!

¢ Third query equivalent to
second query
— allowed in SQL/92
standard, but not
supported in some
systems.
¢ PostgreSQL seems to run it

e
iFind name and age of the oldest sailor(s)

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age

FROM Sailors S

WHERE (SELECT MAX (S2.age)
FROM Sailors S2)
=S.age

