
1

CS186: Introduction to
Database Systems

Joe Hellerstein
and Christopher Olston

Fall 2005

Queries for Today

• What?
• Why?
• Who?
• How?
• For instance?

What: Database Systems Then What: Database Systems Today

What: Database Systems Today What: Database Systems Today

2

What: Database Systems Today So… What is a Database?

• We will be broad in our interpretation
• A Database:

– A very large, integrated collection of data.

• Typically models a real-world “enterprise”
– Entities (e.g., teams, games)
– Relationships (e.g. The A’s are playing in the World Series)

• Might surprise you how flexible this is
– Web search:

• Entities: words, documents
• Relationships: word in document, document links to document.

– P2P filesharing:
• Entities: words, filenames, hosts
• Relationships: word in filename, file available at host

What is a Database Management System?

• A Database Management System (DBMS) is:
– A software system designed to store, manage,

and facilitate access to databases.

• Typically this term used narrowly
– Relational databases with transactions

• E.g. Oracle, DB2, SQL Server

– Mostly because they predate other large
repositories

• Also because of technical richness

– When we say DBMS in this class we will usually
follow this convention

• But keep an open mind about applying the ideas!

What: Is the WWW a DBMS?

• Fairly sophisticated search available
– Crawler indexes pages on the web
– Keyword-based search for pages

• But, currently
– data is mostly unstructured and untyped
– search only:

• can’t modify the data
• can’t get summaries, complex combinations of data

– few guarantees provided for freshness of data, consistency
across data items, fault tolerance, …

– Web sites typically have a (relational) DBMS in the
background to provide these functions.

• The picture is changing quickly
– Information Extraction to get structure from unstructured
– New standards e.g., XML, Semantic Web can help data

modeling

What: “Search” vs. Query

• What if you wanted to
find out which actors
donated to John Kerry’s
presidential campaign?

• Try “actors donated to
john kerry” in your
favorite search engine.

• If it isn’t “published”,
 it can’t be searched!

What: A “Database Query” Approach

3

“Yahoo Actors” JOIN “FECInfo”
(Courtesy of the Telegraph research group @Berkeley)

Q: Did it Work?

• Thought Experiment 2:
–You’re updating a file.
–The power goes out.
–Which changes survive?

A) Yours B) Partner’s C) Both D) Neither E) ???

A) All B) None C) All Since Last Save D) ???

 What: Is a File System a DBMS?

• Thought Experiment 1:
– You and your project partner are editing the

same file.
– You both save it at the same time.
– Whose changes survive?

• Thought Experiment 2:
–You’re updating a file.
–The power goes out.
–Which changes survive?

A) Yours B) Partner’s C) Both D) Neither E) ???

A) All B) None C) All Since Last Save D) ???

 What: Is a File System a DBMS?

• Thought Experiment 1:
– You and your project partner are editing the

same file.
– You both save it at the same time.
– Whose changes survive?

Q: How do you write
programs over a
subsystem when it
promises you only “???” ?

A: Very, very carefully!!

OS Support for Data Management

• Data can be stored in RAM
– this is what every programming language

offers!
– RAM is fast, and random access
– Isn’t this heaven?

• Every OS includes a File System
– manages files on a magnetic disk
– allows open, read, seek, close on a file
– allows protections to be set on a file
– drawbacks relative to RAM?

Database Management Systems

• What more could we want than a file system?
– Simple, efficient ad hoc1 queries
– concurrency control
– recovery
– benefits of good data modeling

• S.M.O.P.2? Not really…
– as we’ll see this semester
– in fact, the OS often gets in the way!

1ad hoc: formed or used for specific or immediate problems or needs
2SMOP: Small Matter Of Programming

Current Commercial Outlook

• A major part of the software industry:
– Oracle, IBM, Microsoft
– also Sybase, Informix (now IBM), Teradata
– smaller players: java-based dbms, devices, OO, …

• Well-known benchmarks (esp. TPC)
• Lots of related industries

– data warehouse, document management, storage, backup,
reporting, business intelligence, ERP, CRM, app integration

• Traditional Relational DBMS products dominant and evolving
– adapted for extensibility (user-defined types), native XML support.
– Microsoft merger of file system/DB…?

• Open Source coming on strong
– MySQL, PostgreSQL, Apache Derby, BerkeleyDB, Ingres, EigenBase

• And of course, the other “database” technologies
– Search engines, P2P, etc.

4

What database systems will we cover?

• We will be try to be broad and touch upon
– Relational DBMS (e.g. Oracle, SQL Server, DB2,

Postgres)
– Document search engines (e.g. Google, Yahoo!

Search, Verity, Spotlight)
– “Semi-structured” DB systems (e.g. XML

repositories like Xindice)

• Starting point
– We assume you have used web search engines
– We assume you don’t know relational databases

• Yet they pioneered many of the key ideas

– So focus will be on relational DBMSs
• With frequent side-notes on search engines, XML issues

Why take this class?

A. Database systems are at the core of CS
B. They are incredibly important to society
C. The topic is intellectually rich
D. A capstone course for undergrad
E. It isn’t that much work
F. Looks good on your resume

Let’s spend a little time on each of these

• Shift from computation to information
– True in corporate computing for years
– Web, p2p made this clear for personal computing
– Increasingly true of scientific computing

• Need for DB technology has exploded in the last
years
– Corporate: retail swipe/clickstreams, “customer relationship

mgmt”, “supply chain mgmt”, “data warehouses”, etc.
– Web:not just “documents”. Search engines, e-commerce,

blogs, wikis, other “web services”.
– Scientific: digital libraries, genomics, satellite imagery,

physical sensors, simulation data
– Personal: Music, photo, & video libraries. Email archives.

File contents (“desktop search”).

A. Database systems are the core of CS

Why take this class? Why take this class?

• “Knowledge is power.” --
Sir Francis Bacon

• “With great power comes
great responsibility.” --
SpiderMan’s Uncle Ben

B. DBs are incredibly important to society

Policy-makers should understand technological possibilities.
Informed Technologists needed in public discourse on usage.

• representing information
– data modeling

• languages and systems for querying data
– complex queries & query semantics*
– over massive data sets

• concurrency control for data manipulation
– controlling concurrent access
– ensuring transactional semantics

• reliable data storage
– maintain data semantics even if you pull the plug

* semantics: the meaning or relationship of meanings of a sign or set of signs

Why take this class?
C. The topic is intellectually rich.

• We will see
– Algorithms and cost analyses
– System architecture and implementation
– Resource management and scheduling
– Computer language design, semantics and

optimization
– Applications of AI topics including logic

and planning
– Statistical modeling of data

Why take this class?
D. The course is a capstone.

5

• Bad news: It is a lot of work.

• Good news: the course is front loaded
– Most of the hard work is in the first half of

the semester
– Load balanced with most other classes

Why take this class?
E. It isn’t that much work.

• Yes, but why? This is not a course for:
– Oracle administrators
– IBM DB2 engine developers

• Though it’s useful for both!

• It is a course for well-educated computer
scientists
– Database system concepts and techniques

increasingly used “outside the box”
• Ask your friends at Microsoft, Yahoo!, Google, Apple, etc.

• Actually, they may or may not realize it!

– A rich understanding of these issues is a basic
and (un?)fortunately unusual skill.

Why take this class?
F. Looks good on my resume.

Who?

• Instructors
– Prof. Joe Hellerstein, UC Berkeley
– Dr. Christopher Olston, Yahoo! Research
– cs186profs@db.cs.berkeley.edu

• TAs
– John Lo
– Nathan Burkhart
– Alex Rasmussen

How? Workload

• Projects with a “real world” focus:
– Modify the internals of a “real” open-source

database system: PostgreSQL
• Serious C system hacking
• Measure the benefits of our changes

– Build a web-based application w/PostgreSQL,
Apache & PHP): SQL + PHP

• Other homework assignments and/or quizzes
• Exams – 1 Midterm & 1 Final
• Projects to be done in groups of 2

– Pick your partner ASAP
• The course is “front-loaded”

– most of the hard work is in the first half

How? Administrivia

• http://inst.eecs.berkeley.edu/~cs186
• Prof. Office Hours:

– Hellerstein: 685 Soda Hall, TBA (check web page)
– Olston: 687 Soda Hall, Thursday 2PM

• TAs
– Office Hours: TBA (check web page)

• Discussion Sections WILL NOT meet this
week

How? Administrivia, cont.

• Textbook
– Ramakrishnan and Gehrke, 3rd Edition

• Grading, hand-in policies, etc. will be on Web Page
• Cheating policy: zero tolerance

– We have the technology…

• Team Projects
– Teams of 2
– Peer evaluations.

• Be honest! Feedback is important. Trend is more important
than individual project.

• Class bulletin board - ucb.class.cs186
– read it regularly and post questions/comments.
– mail broadcast to all TAs will not be answered
– mail to the cs186 course account will not be answered

• Class Blog for announcements

6

Agenda for the rest of today

• A “free tasting” of central concepts in DB
field:
– queries (vs. search)
– data independence
– transactions

• Next Time
– the Relational data model

• Today’s lecture is from Chapter 1 in R&G
• Read Chapter 2 for next class.

Describing Data: Data Models

• A data model is a collection of concepts for
describing data.

• A schema is a description of a particular
collection of data, using a given data model.

• The relational model of data is the most
widely used model today.
– Main concept: relation, basically a table with

rows and columns.
– Every relation has a schema, which describes the

columns, or fields.

Example: University Database

• Schema:
– Students(sid: string, name: string, login:

string, age: integer, gpa:real)
– Courses(cid: string, cname:string,

credits:integer)
– Enrolled(sid:string, cid:string,

grade:string)

Levels of Abstraction

• Views describe
how users see the
data.

• Conceptual
schema defines
logical structure

• Physical schema
describes the files
and indexes used.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

DB

Users

Example: University Database

• Conceptual schema:
– Students(sid: string, name: string, login:

string, age: integer, gpa:real)
– Courses(cid: string, cname:string,

credits:integer)
– Enrolled(sid:string, cid:string,

grade:string)
• Physical schema:

– Relations stored as unordered files.
– Index on first column of Students.

• External Schema (View):
– Course_info(cid:string,enrollment:integer)

Data Independence

• Applications insulated from how data is
structured and stored.

• Logical data independence: Protection
from changes in logical structure of data.

• Physical data independence: Protection
from changes in physical structure of data.

• Q: Why is this particularly important for
DBMS?

Because databases and their
associated applications persist.

7

Agenda …

• A “free tasting” of central concepts in
DB field:
– queries (vs. search)
– data independence
– transactions

Concurrent execution
of user programs

• Why?

– Utilize CPU while waiting for disk I/O
• (database programs make heavy use of disk)

– Avoid short programs waiting behind long ones
• e.g. ATM withdrawal while bank manager sums

balance across all accounts

Concurrent execution
• Interleaving actions of different programs:

trouble!
Example:
 Bill transfers $100 from savings to checking

Savings –= 100; Checking += 100
 Meanwhile, Bill’s wife requests account info.
Bad interleaving:

• Savings –= 100
• Print balances
• Checking += 100

– Printout is missing $100 !

Concurrency Control

• DBMS ensures such problems don’t
arise

• Users can pretend they are using a
single-user system. (called “Isolation”)
– Thank goodness!

Key concept: Transaction

• an atomic sequence of database
actions (reads/writes)

• takes DB from one consistent state to
another

consistent state 1 consistent state 2
transaction

Example

• Here, consistency is based on our knowledge
of banking “semantics”

• In general, up to writer of transaction to
ensure transaction preserves consistency

• DBMS provides (limited) automatic
enforcement, via integrity constraints
– e.g., balances must be >= 0

checking: $200
savings: $1000

transaction checking: $300
savings: $900

8

Concurrent transactions

• Goal: execute xacts {T1, T2, …
Tn}, and ensure a consistent
outcome

• One option: “serial” schedule (one
after another)

• Better: allow interleaving of xact
actions, as long as outcome is
equivalent to some serial schedule

Possible Enforcement Methods

• Optimistic: permit arbitrary
interleaving, then check
equivalence to serial sched.

• Pessimistic: xacts set locks on data
objects, such that illegal
interleaving is impossible

Locking example

 T1 (Bill): Savings –= 100; Checking += 100
 T2 (Bill’s wife): Print(Checking); Print(Savings)

– T1 and T2 both lock Savings and Checking
objects

– If T1 locks Savings & Checking first, T2
must wait

A wrinkle …

Suppose:
1. T1 locks Savings
2. T2 locks Checking
• Now neither transaction can proceed!

– called “deadlock”
– DBMS will abort and restart one of T1 and T2
– Need “undo” mechanism that preserves consistency

– Undo mechanism also necessary if system crashes
between “Savings –= 100” and “Checking += 100” …

 T1 (Bill): Savings –= 100; Checking += 100
 T2 (Bill’s wife): Print(Checking); Print(Savings)

Ensuring Transaction Properties

• DBMS ensures:
– atomicity even if xact aborted (due to deadlock, system

crash, …)
– durability of committed xacts, even if system crashes.

• Idea: Keep a log of all actions carried out by the DBMS:
– Record all DB modifications in log, before they are executed
– To abort a xact, undo logged actions in reverse order
– If system crashes, must:

1) undo partially executed xacts (ensures atomicity)
2) redo committed xacts (ensures durability)

– trickier than it sounds!

Architecture of a DBMS …

9

Typical DBMS architecture

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

concurrency control,
logging & recovery

FYI: A text search engine
• Less “system” than DBMS

– Uses OS files for storage
– Just one access method
– One hardwired query

• regardless of search string

• Typically no concurrency or
recovery management
– Read-mostly
– Batch-loaded, periodically
– No updates to recover
– OS a reasonable choice

• Smarts: text tricks
– Search string modifier (e.g.

“stemming” and synonyms)
– Ranking Engine (sorting the

output, e.g. by word or
document popularity)

– no semantics: WYGIWIGY

The Access Method

Buffer Management

Disk Space Management

DB

OS

The Query

Search String Modifier

Simple
DBMS}

Ranking Engine

Advantages of a DBMS
• Data independence
• Efficient data access
• Data integrity & security
• Data administration
• Concurrent access, crash recovery
• Reduced application development time
• So why not use them always?

– Expensive/complicated to set up & maintain
– This cost & complexity must be offset by need
– General-purpose, not suited for special-purpose tasks

(e.g. text search!)

Databases make these folks happy ...

• DBMS vendors, programmers
– Oracle, IBM, MS …

• End users in many fields
– Business, education, science, …

• DB application programmers
– Build data entry & analysis tools on top of DBMSs
– Build web services that run off DBMSs

• Database administrators (DBAs)
– Design logical/physical schemas
– Handle security and authorization
– Data availability, crash recovery
– Database tuning as needs evolve

…must understand how a DBMS works

Summary

• DBMS used to maintain, query large datasets.
– can manipulate data and exploit semantics

• Other benefits include:
– recovery from system crashes,
– concurrent access,
– quick application development,
– data integrity and security.

• Levels of abstraction provide data
independence.

• In this course we will explore:
1) How to be a sophisticated user of DBMS technology
2) What goes on inside the DBMS

