
1

By relieving the brain of all unnecessary
work, a good notation sets it free to

concentrate on more advanced problems,
and, in effect, increases the mental power of

the race.
-- Alfred North Whitehead (1861 - 1947)

Relational Algebra

R & G, Chapter 4

π
Relational Query Languages

• Query languages:  Allow manipulation and retrieval of
data from a database.

• Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for much optimization.

• Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

Relational Algebra:  More operational, very
useful for representing execution plans.

Relational Calculus:   Lets users describe what
they want, rather than how to compute it.
(Non-procedural, declarative.)

  Understanding Algebra & Calculus is key to 
      understanding SQL, query processing! 

Preliminaries

• A query is applied to relation instances, and the
result of a query is also a relation instance.
– Schemas of input relations for a query are fixed (but

query will run over any legal instance)
– The schema for the result of a given query is also

fixed.  It is determined by the definitions of the query
language constructs.

• Positional vs. named-field notation:
– Positional notation easier for formal definitions,

named-field notation more readable.
– Both used in SQL

• Though positional notation is not encouraged

Relational Algebra: 5 Basic Operations

• Selection  ( σ )    Selects a subset of rows from relation
(horizontal).

• Projection  ( π )  Retains only wanted columns from relation
(vertical).

• Cross-product  ( × )  Allows us to combine two relations.

• Set-difference  ( — )  Tuples in r1, but not in r2.
• Union  ( ∪ )  Tuples in r1 or in r2.

Since each operation returns a relation, operations can be
composed!  (Algebra is “closed”.)

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

S1

S2

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Boats

Example Instances



2

Projection (π)
!age S( )2• Examples:                       ;

• Retains only attributes that are in the “projection list”.
• Schema of result:

– exactly the fields in the projection list, with the same names that they
had in the input relation.

• Projection operator has to eliminate duplicates    (How do they
arise? Why remove them?)
– Note: real systems typically don’t do duplicate elimination unless the

user explicitly asks for it.  (Why not?)

!
sname rating

S
,

( )2

Projection (π)

age

35.0

55.5

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

)2(
,

S
ratingsname

!

!age S( )2

Selection (σ)

!
rating

S
>8

2( )

sname rating
yuppy 9
rusty 10

! "
sname rating rating

S
,

( ( ))
>8

2

• Selects rows that satisfy selection condition.
• Result is a relation.

Schema of result is same as that of the input relation.

• Do we need to do duplicate elimination?

sid sname rating age 
28 yuppy 9 35.0 
31 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

Union and Set-Difference

• Both of these operations take two input relations, which must be
union-compatible:

– Same number of fields.
– `Corresponding’ fields have the same type.

• For which, if any, is duplicate elimination required?

Union

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1

S2

S S1 2!

Set Difference

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1

S2

sid sname rating age

22 dustin 7 45.0

S2 – S1

sid sname rating age

28 yuppy 9 35.0

44 guppy 5 35.0

S S1 2!



3

Cross-Product

• S1 × R1: Each row of S1 paired with each row of R1.

• Q: How many rows in the result?
• Result schema has one field per field of S1 and R1,

with field names `inherited’ if possible.
– May have a naming conflict:  Both S1 and R1 have a field

with the same name.
– In this case, can use the renaming operator:

! ( ( , ), )C sid sid S R1 1 5 2 1 1" " #

Cross Product Example

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1 S1

R1 X S1 =

Compound Operator: Intersection

• In addition to the 5 basic operators, there are several additional
“Compound Operators”

– These add no computational power to the
language, but are useful shorthands.

– Can be expressed solely with the basic ops.

• Intersection takes two input relations, which must be union-
compatible.

• Q: How to express it using basic operators?

R ∩ S = R  − (R − S)

Intersection

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1

S2

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

! 

S1"S2

Compound Operator: Join
• Joins are compound operators involving cross

product, selection, and (sometimes) projection.
• Most common type of join is a “natural join” (often

just called “join”).  R     S conceptually is:
– Compute R × S
– Select rows where attributes that appear in both relations

have equal values
– Project all unique atttributes and one copy of  each of the

common ones.

• Note: Usually done much more efficiently than this.

Natural Join Example
sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1 S1

S1       R1 =

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96



4

Other Types of Joins

• Condition Join (or “theta-join”):

• Result schema same as that of cross-product.
• May have fewer tuples than cross-product.
• Equi-Join:  Special case: condition c contains only

conjunction of equalities.

R
c
S

c
R S>< = !" ( )

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

11
.1.1
RS

sidRsidS <
<>

Examples

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

bid  bname color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailors

Boats

Find names of sailors who’ve reserved boat #103

• Solution 1: ! "
sname bid

serves Sailors(( Re ) )
=103

><

• Solution 2: ! "
sname bid

serves Sailors( (Re ))
=103

><

Find names of sailors who’ve reserved a red boat

• Information about boat color only available in
Boats; so need an extra join:

! "
sname color red

Boats serves Sailors((
' '

) Re )
=

>< ><

 A more efficient solution:

! ! ! "
sname sid bid color red

Boats s Sailors( ((
' '

) Re ) )
=

>< ><

 A query optimizer can find this given the first solution!

Find sailors who’ve reserved a red or a green boat

• Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

! "( , (
' ' ' '

))Tempboats
color red color green

Boats
= # =

! sname Tempboats serves Sailors( Re )>< ><

Find sailors who’ve reserved a red and a green boat

• Cut-and-paste previous slide?

 
 

! 

" (Tempboats,(#
color='red '$color='green '

Boats))

! sname Tempboats serves Sailors( Re )>< ><



5

Find sailors who’ve reserved a red and a green boat

• Previous approach won’t work!  Must identify
sailors who’ve reserved red boats, sailors who’ve
reserved green boats, then find the intersection
(note that sid is a key for Sailors):

! " #( , ((
' '

) Re ))Tempred
sid color red

Boats serves
=

><

 

! sname Tempred Tempgreen Sailors(( ) )" >< 

! " #( , ((
' '

) Re ))Tempgreen
sid color green

Boats serves
=

><

Summary

• Relational Algebra: a small set of operators
mapping relations to relations
– Operational, in the sense that you specify the

explicit order of operations
– A closed set of operators!  Can mix and match.

• Basic ops include: σ, π, ×, ∪, —
• Important compound ops: ∩,


