

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run over any legal instance)
 - The schema for the *result* of a given query is also fixed. It is determined by the definitions of the query language constructs.
- Positional vs. named-field notation:

 Positional notation easier for formal definitions, named-field notation more readable.
 Both used in SQL
 - Though positional notation is not encouraged

Since each operation returns a relation, operations can be *composed!* (Algebra is "closed".)

	<u>sid</u>	<u>bi</u>	<u>1</u>	<u>day</u>					
			22	101		10/10/96			
			58	10	3	11/1	2/96		
$S_1 \frac{\text{sid}}{\text{sname}} \text{sname} \text{rating} a$									
Boats	5	1	r	22	dusti	n	1	7	45.0
<u>bid</u>	bname	color		31	lubbe	bber		3	55.5
101	Interlake	red		58	rusty		10		35.0
103	Clipper Marine	green	S2	sid	sid sname rati	ing	age		
104	withine	icu		28 yuppy		9)	35.0	
				31	lubber		8	3	55.5
				44	guppy		5	5	35.0
				58	rusty		1	0	35.0

Cross-Product

- S1 \times R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - May have a naming conflict: Both S1 and R1 have a field with the same name.
 - In this case, can use the *renaming operator*.

$$\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$$

	Cross Product Example														
	sid	bid		<u>day</u> 10/10/96 11/12/96				<u>sid</u> snam		le	rating	a	ge		
	22	101	10					22	dustin lubber		7	4	5.0		
	58	103	11					31			8	5	5.5		
								58 rusty			10	3	5.0		
	R1						-	S1							
													T		
				(sid)	sname		rating	age	(sid)	bid day					
	R1 X S1 =		22	dusti	n	7	45.0	22	101	10/10/96					
1			22	dustin		7	45.0	58	103	11/12/	96				
			31	lubber		8	55.5	22	101	10/10/9	96				
				31	lubber		8	55.5	58	103	11/12/	96			
				58	rusty		10	35.0	22	101	10/10/9	96			
				58	rusty		10	35.0	58 103		11/12/9	96			
1				-			•				•		•		

In addition to the 5 basic operators, there are several additional

- In addition to the 5 basic operators, there are several additional "Compound Operators"
 - These add no computational power to the language, but are useful shorthands.
 - $-\operatorname{Can}$ be expressed solely with the basic ops.
- Intersection takes two input relations, which must be <u>union-compatible</u>.
 Q: How to express it using basic operators?

 $R \cap S = R - (R - S)$

Compound Operator: Join

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "<u>natural join</u>" (often just called "join"). R ⋈ S conceptually is:
 – Compute R × S
 - Select rows where attributes that appear in both relations have equal values
 - Project all unique attributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.

sid	bid	dav		sid	sna	me	rating	age	
22	101	10/10/9	96	22	dus	tin	7	45.0	
58	103	11/12/9	96	31	lub	ber	8	55.5	
58 rusty 10 3									
S1 → R1 =									
sid sname rating age bid day									
S	id	sname	rating	age	bid	day	7		
s 2	id 2	sname dustin	rating 7	age 45.0	bid 101	day 10/	7/10/96	1	

Other Types of Joins										
$R \bowtie_c S = \sigma_c (R \times S)$										
(sid) sname r	ating	age	(sid)	bid	day					
22 dustin 7	7	45.0	58	103	11/12/96					
31 lubber 8	3	55.5	58	103	11/12/96					
	$S1 \bowtie S1 sid < R1 sid^R1$									
 <i>Result schema</i> same as that of cross-product. May have fewer tuples than cross-product. <u>Equi-Join</u>: Special case: condition c contains only 										

(Examples		Reserv	ves	;	<u>sid</u> 22	<u>bi</u>	<u>d</u> 1	<u>da</u> 10/1	ny 0/96
						58	10	3	11/1	2/96
				<u>si</u>	d	snam	ie	ing	age	
			Sailors	22	2	dustin lubber		7 8		45.0
				3	1					55.5
				5	8	rusty	usty		0	35.0
			·							
	Boats bid		bname		col	or				
		101	Interlake	e	Blι	ıe				
		102	Interlake	e	Re	d				
		103	Clipper		Gre	een				
		104	Marine	e l		d				
		-	•							

Find names of sailors who've reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
 - $\pi_{\textit{sname}}((\sigma_{\textit{color}='\textit{red}'}\textit{Boats}) \bowtie \text{Reserves} \bowtie \textit{Sailors})$
 - * A more efficient solution:
 - $\pi_{\textit{sname}}(\pi_{\textit{sid}}^{((\pi_{\textit{bid}}\sigma_{\textit{color}=\textit{red}},\textit{Boats}) \bowtie \text{Res}) \bowtie \textit{Sailors})$
 - ► A query optimizer can find this given the first solution!

