

Relational Calculus

- Query has the form: $\{T \mid p(T)\}$
$-\boldsymbol{p}(\boldsymbol{T})$ is a formula containing \boldsymbol{T}
- Answer $=$ tuples \boldsymbol{T} for which $\boldsymbol{p}(T)=$ true.

Formulae

- Atomic formulae:
$R \in$ Relation
R.a op S.b
R.a op constant
... op is one of $<,>,=, \leq, \geq, \neq$
- A formula can be:
- an atomic formula
- $\neg p, p \wedge q, p \vee q, p \Rightarrow q$
- $\exists R(p(R))$
- $\forall R(p(R))$

Free and Bound Variables

- Quantifiers: \exists and \forall
- Use of $\exists X$ or $\forall X$ binds X.
- A variable that is not bound is free.
- Recall our definition of a query:
$-\{T \mid p(T)\}$
- Important restriction:
$-T$ must be the only free variable in $p(T)$.
- all other variables must be bound using a quantifier.

Simple Queries

- Find all sailors with rating above 7
$\{S \mid S \in$ Sailors \wedge S.rating $>7\}$
- Find names and ages of sailors with rating above 7.
$\{S \mid \exists S 1 \in$ Sailors(S1.rating > 7

> ^S.sname = S1.sname
> ^ S.age $=$ S1.age $)\}$

- Note: S is a variable of 2 fields (i.e. S is a projection of Sailors)

Joins (continued)
Find sailors rated > 7 who've reserved a red boat
\{S | S \in Sailors ^ S.rating > 7 ^ $\exists R(R \in$ Reserves \wedge R.sid $=$ S.sid $\wedge \exists B(B \in$ Boats \wedge B.bid $=$ R.bid ^ B.color = 'red')) \}

- This may look cumbersome, but it's not so different from SQL!

Universal Quantification

Find sailors who've reserved all boats
\{ S | S \in Sailors \wedge
$\forall B \in$ Boats $(\exists R \in$ Reserves
(S.sid = R.sid
\wedge B.bid $=$ R.bid)) $\}$

A trickier example...
Find sailors who've reserved all Red boats
\{S | S \in Sailors ^
$\forall B \in$ Boats (B.color = 'red' \Rightarrow $\exists R(R \in$ Reserves $\wedge S . s i d=R$. sid \wedge B.bid = R.bid)) $\}$
Alternatively..
\{S | S \in Sailors ^
$\forall B \in$ Boats (B.color \neq 'red' v
$\exists R(R \in$ Reserves \wedge S.sid $=$ R.sid
\wedge B.bid = R.bid)) \}
$a \Rightarrow b$ is the same as $\neg a \vee b$
b

A Remark: Unsafe Queries

- \exists syntactically correct calculus queries that have an infinite number of answers! Unsafe queries.
- e.g., $\{S \mid \neg(S \in$ Sailors $)\}$
- Solution???? Don't do that!

Expressive Power

- Expressive Power (Theorem due to Codd):
- Every query that can be expressed in relational algebra can be expressed as a safe query in relational calculus; the converse is also true.
- Relational Completeness:

Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.
(actually, SQL is more powerful, as we will see...)

Summary

- Formal query languages - simple and powerful.
- Relational algebra is operational
- used as internal representation for query evaluation plans.
- Relational calculus is "declarative"
- query = "what you want", not "how to compute it" - Same expressive power
--> relational completeness.
- Several ways of expressing a given query - a query optimizer should choose the most efficient version.

