
1

SQL: The Query Language
Part 1

R &G - Chapter 5

Life is just a bowl of queries.

-Anon
(not Forrest Gump)

Relational Query Languages

• Two sublanguages:
– DDL – Data Definition Language

• Define and modify schema (at all 3 levels)
– DML – Data Manipulation Language

• Queries can be written intuitively.

• DBMS is responsible for efficient evaluation.
– The key: precise semantics for relational queries.
– Optimizer can re-order operations, without affecting

query answer.
– Choices driven by “cost model”

The SQL Query Language

• The most widely used relational query language.
• Standardized

(although most systems add their own “special sauce”
-- including PostgreSQL)

• We will study SQL92 -- a basic subset

Example Database

278Nancy3

392Jim2

227Fred1

ageratingsnamesid

Sailors

9/131022

9/121021

daybidsid

Reserves

redSanta Maria103

bluePinta102

redNina101

colorbnamebid

Boats

The SQL DDL

CREATE TABLE Sailors (sid INTEGER,
 sname CHAR(20), rating INTEGER, age REAL,
 PRIMARY KEY sid)

CREATE TABLE Boats (bid INTEGER,
 bname CHAR (20), color CHAR(10)
 PRIMARY KEY bid)

 CREATE TABLE Reserves (sid INTEGER,
 bid INTEGER, day DATE,
 PRIMARY KEY (sid, bid, date),
 FOREIGN KEY sid REFERENCES Sailors,
 FOREIGN KEY bid REFERENCES Boats)

 The SQL DML

• Find all 18-year-old sailors:

SELECT *
 FROM Sailors S
WHERE S.age=18

• To find just names and ratings, replace the first line:

SELECT S.sname, S.rating

278Nancy3

392Jim2

227Fred1

ageratingsnamesid

Sailors

2

 Querying Multiple Relations

SELECT S.sname
 FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=102

278Nancy3

392Jim2

227Fred1

ageratingsnamesid

Sailors

9/131022

9/121021

daybidsid

Reserves

Basic SQL Query

• relation-list : List of relation names
– possibly with a range variable after each name

• target-list : List of attributes of tables in relation-list

• qualification : Comparisons combined using AND, OR
and NOT.

• DISTINCT : optional keyword indicating that the
answer should not contain duplicates.

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

1. FROM : compute cross product of tables.
2. WHERE : Check conditions, discard tuples that fail.
3. SELECT : Delete unwanted fields.
4. DISTINCT (optional) : eliminate duplicate rows.

Note: Probably the least efficient way to compute a query!
– Query optimizer will find more efficient ways to get the

same answer.

Query Semantics Find sailors who’ve reserved at least one
boat

• Would adding DISTINCT to this query make a
difference?

• What is the effect of replacing S.sid by S.sname
in the SELECT clause?
– Would adding DISTINCT to this variant of the query

make a difference?

SELECT S.sid
 FROM Sailors S, Reserves R
WHERE S.sid=R.sid

About Range Variables

• Needed when ambiguity could arise.
– e.g., same table used multiple times in FROM

(“self-join”)

SELECT x.sname, x.age, y.sname, y.age
 FROM Sailors x, Sailors y
 WHERE x.age > y.age

278Nancy3

392Jim2

227Fred1

ageratingsnamesid

Sailors

Arithmetic Expressions

SELECT S.age, S.age-5 AS age1, 2*S.age AS age2
 FROM Sailors S
WHERE S.sname = ‘dustin’

SELECT S1.sname AS name1, S2.sname AS name2
 FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating - 1

3

String Comparisons

`_’ stands for any one character and `%’ stands for
0 or more arbitrary characters.

SELECT S.sname
 FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Find sid’s of sailors who’ve reserved a red or a green boat

SELECT R.sid
 FROM Boats B, Reserves R
WHERE R.bid=B.bid AND
 (B.color=‘red’ OR B.color=‘green’)

SELECT R.sid
 FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
UNION
SELECT R.sid
 FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘green’

... or:

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color=‘red’ AND B.color=‘green’)

Find sid’s of sailors who’ve reserved a red and a green
boat

Find sid’s of sailors who’ve reserved a red and a green
boat

SELECT S.sid
 FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid

 AND R.bid=B.bid
 AND B.color=‘red’

INTERSECT
SELECT S.sid
 FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid

 AND R.bid=B.bid
 AND B.color=‘green’

• Could use a self-join:

SELECT R1.sid
 FROM Boats B1, Reserves R1,
 Boats B2, Reserves R2
WHERE R1.sid=R2.sid
 AND R1.bid=B1.bid
 AND R2.bid=B2.bid
 AND (B1.color=‘red’ AND B2.color=‘green’)

Find sid’s of sailors who’ve reserved a red and a green
boat Find sid’s of sailors who have not reserved a boat

SELECT S.sid
 FROM Sailors S
EXCEPT
SELECT S.sid
 FROM Sailors S, Reserves R
WHERE S.sid=R.sid

4

Nested Queries: IN

SELECT S.sname
 FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R

 WHERE R.bid=103)

Names of sailors who’ve reserved boat #103:

SELECT S.sname
 FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
 FROM Reserves R

 WHERE R.bid=103)

Names of sailors who’ve not reserved boat #103:

Nested Queries: NOT IN

Nested Queries with Correlation

• Subquery must be recomputed for each Sailors tuple.
– Think of subquery as a function call that runs a query!

• Also: NOT EXISTS.

SELECT S.sname
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Names of sailors who’ve reserved boat #103:

UNIQUE

SELECT S.sname
FROM Sailors S
WHERE UNIQUE
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Names of sailors who’ve reserved boat #103 exactly once:

More on Set-Comparison Operators

• we’ve seen: IN, EXISTS, UNIQUE
• can also have: NOT IN, NOT EXISTS, NOT UNIQUE
• other forms: op ANY, op ALL

• Find sailors whose rating is greater than that of
some sailor called Horatio:

SELECT *
 FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.sname=‘Horatio’)

A Tough One

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without
...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

5

Summary

• Relational model has well-defined query semantics

• SQL provides functionality close to basic relational model
(some differences in duplicate handling, null values, set

operators, …)

• Typically, many ways to write a query
– DBMS figures out a fast way to execute a query,

regardless of how it is written.

