
1

Implementation of
Relational Operations

R&G - Chapters 12 and 14

Introduction

• Today’s topic: QUERY PROCESSING

• Some database operations are EXPENSIVE
• Can greatly improve performance by being “smart”

– e.g., can speed up 1,000,000x over naïve approach
• Main weapons are:

1. clever implementation techniques for operators
2. exploiting relational algebra “equivalences”
3. using statistics and cost models to choose among these.

A Really Bad Query Optimizer

• For each Select-From-Where query block
– Create a plan that:

• Forms the cross product
of the FROM clause

• Applies the WHERE clause

• Then, as needed:
– Apply the GROUP BY clause
– Apply the HAVING clause
– Apply any projections and output expressions
– Apply duplicate elimination and/or ORDER BY

×

σpredicates

tables
…

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

The Query Optimization Game

• Goal is to pick a “good” plan
– Good = low expected cost, under cost model
– Degrees of freedom:

• access methods
• physical operators
• operator orders

• Roadmap for this topic:
– First: implementing individual operators
– Then: optimizing multiple operators

Relational Operations

• We will consider how to implement:
– Selection (σ) Select a subset of rows.
– Projection (π) Remove unwanted columns.
– Join () Combine two relations.
– Set-difference (-) Tuples in reln. 1, but not in reln. 2.
– Union (∪) Tuples in reln. 1 and in reln. 2.

• Q: What about Intersection?

><

2

Schema for Examples

• Similar to old schema; rname added for variations.
• Sailors:

– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
– |S|=500, pS=80.

• Reserves:
– Each tuple is 40 bytes, 100 tuples per page, 1000 pages.
– |R|=1000, pR=100.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Simple Selections

• How best to perform? Depends on:
– what indexes are available
– expected size of result

• Size of result approximated as
(size of R) * selectivity

– selectivity estimated via statistics – we will discuss shortly.

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’! R attr valueop R. ()

Our options …

• If no appropriate index exists:
Must scan the whole relation

cost = |R|. For “reserves” = 1000 I/Os.

• With index on selection attribute:
1. Use index to find qualifying data entries
2. Retrieve corresponding data records

Total cost = cost of step 1 + cost of step 2
– For “reserves”, if selectivity = 10% (100 pages, 10000 tuples):

• If clustered index, cost is a little over 100 I/Os;
• If unclustered, could be up to 10000 I/Os! … unless …

Our options …

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED
UNCLUSTERED

Refinement for unclustered indexes

1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order.
Each data page is looked at just once (though # of

such pages likely to be higher than with clustering).

(Index File)
(Data file)

Data entries

Data Records

UNCLUSTERED

General Selection Conditions

• First, convert to conjunctive normal form (CNF):
– (day<8/9/94 OR bid=5 OR sid=3) AND

(rname=‘Paul’ OR bid=5 OR sid=3)
• We only discuss the case with no ORs
• Terminology:

– A B-tree index matches terms that involve only attributes
in a prefix of the search key. e.g.:

– Index on <a, b, c> matches a=5 AND b= 3, but not b=3.

 (day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

3

2 Approaches to General Selections

Approach I:
1. Find the cheapest access path
2. retrieve tuples using it
3. Apply any remaining terms that don’t match the index

– Cheapest access path: An index or file scan that we
estimate will require the fewest page I/Os.

Cheapest Access Path - Example

query: day < 8/9/94 AND bid=5 AND sid=3

some options:
B+tree index on day; check bid=5 and sid=3 afterward.
hash index on <bid, sid>; check day<8/9/94 afterward.

• How about a B+tree on <rname,day>?
• How about a B+tree on <day, rname>?
• How about a Hash index on <day, rname>?

Approach II: use 2 or more matching indexes.
1. From each index, get set of rids
2. Compute intersection of rid sets
3. Retrieve records for rids in intersection
4. Apply any remaining terms

EXAMPLE: day<8/9/94 AND bid=5 AND sid=3
Suppose we have an index on day, and another index on sid.
– Get rids of records satisfying day<8/9/94.
– Also get rids of records satisfying sid=3.
– Find intersection, then retrieve records, then check bid=5.

2 Approaches to General Selections Projection

• Issue is removing duplicates.

• Use sorting!!
1. Scan R, extract only the needed attributes
2. Sort the resulting set
3. Remove adjacent duplicates

Cost:
Reserves with size ratio 0.25 = 250 pages.
With 20 buffer pages can sort in 2 passes, so:

1000 +250 + 2 * 2 * 250 + 250 = 2500 I/Os

SELECT DISTINCT
 R.sid, R.bid
FROM Reserves R

Projection -- improved

• Modify the external sort algorithm:
– Modify Pass 0 to eliminate unwanted fields.
– Modify Passes 1+ to eliminate duplicates.

Cost:
Reserves with size ratio 0.25 = 250 pages.
With 20 buffer pages can sort in 2 passes, so:

1. Read 1000 pages
2. Write 250 (in runs of 40 pages each)
3. Read and merge runs

Total cost = 1000 + 250 +250 = 1500.

Other Projection Tricks

If an index search key contains all wanted attrs:
• Do index-only scan

– Apply projection techniques to data entries (much smaller!)

If a B+Tree index search key prefix has all wanted attrs:
• Do in-order index-only scan

– Compare adjacent tuples on the fly (no sorting required!)

4

Query Execution Framework

SELECT DISTINCT name, gpa

 FROM Students

One possible query execution plan:

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa

iteratorIterators

• Relational operators are all subclasses of the class iterator:

class iterator {
 void init();
 tuple next();
 void close();
 iterator &inputs[];

 // additional state goes here
}

• Note:
– Edges in the graph are specified by inputs (max 2, usually)
– Any iterator can be input to any other!

Example: Sort

• init():
– generate the sorted runs on disk (passes 0 to n-1)
– Allocate runs[] array and fill in with disk pointers.
– Initialize numberOfRuns
– Allocate nextRID array and initialize to first RID of each run

• next():
– nextRID array tells us where we’re “up to” in each run
– find the next tuple to return based on nextRID array
– advance the corresponding nextRID entry
– return tuple (or EOF -- “End of Fun” -- if no tuples remain)

• close():
– deallocate the runs and nextRID arrays

class Sort extends iterator {
 void init();
 tuple next();
 void close();
 iterator &inputs[1];
 int numberOfRuns;
 DiskBlock runs[];
 RID nextRID[];
}

Postgres Version

• src/backend/executor/nodeSort.c
– ExecInitSort (init)
– ExecSort (next)
– ExecEndSort (close)

• The encapsulation stuff is hardwired into the
Postgres C code
– Postgres predates even C++!
– See src/backend/execProcNode.c for the code that

“dispatches the methods” explicitly!

Joins

• Joins are very common.
• R × S is large; so, R × S followed by a selection is

inefficient.
• Many approaches to reduce join cost.

• Join techniques we will cover today:
1. Nested-loops join
2. Index-nested loops join
3. Sort-merge join

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid foreach tuple r in R do

foreach tuple s in S do
if ri == sj then add <r, s> to result

Simple Nested Loops Join

Cost = (pR*|R|)*|S| + |R| = 100*1000*500 + 1000 IOs
– At 10ms/IO, Total time: ???

• What if smaller relation (S) was “outer”?

• What assumptions are being made here?

• What is cost if one relation can fit entirely in memory?

><R S:

5

Page-Oriented Nested Loops Join

Cost = |R|*|S| + |R| = 1000*500 + 1000

• If smaller relation (S) is outer, cost = 500*1000 + 500

• Much better than naïve per-tuple approach!

foreach page bR in R do
 foreach page bS in S do
 foreach tuple r in bR do

foreach tuple s in bSdo
if ri == sj then add <r, s> to result

><R S:

Block Nested Loops Join

• Page-oriented NL doesn’t exploit extra buffers :(
• Idea to use memory efficiently:

. . .

. . .

R & S
block of R tuples

(B-2 pages)

Input buffer for S Output buffer

. . .

Join Result

Cost: Scan outer + (#outer blocks * scan inner)
#outer blocks = ! "# /of pages of outer blocksize

Examples of Block Nested Loops Join

• Say we have B = 100+2 memory buffers
• Join cost = |outer| + (#outer blocks * |inner|)

#outer blocks = |outer| / 100

• With R as outer (|R| = 1000):
– Scanning R costs 1000 IO’s (done in 10 blocks)
– Per block of R, we scan S; costs 10*500 I/Os
– Total = 1000 + 10*500.

• With S as outer (|S| = 500):
– Scanning S costs 500 IO’s (done in 5 blocks)
– Per block of S, we can R; costs 5*1000 IO’s
– Total = 500 + 5*1000.

Index Nested Loops Join

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

><R S:

Data entries

Data Records

INDEX on S

lookup(ri)

sjS:

R: ri

 Cost = |R| + (|R|*pR) * cost to find matching S tuples

• If index uses Alt. 1, cost = cost to traverse tree from root to leaf.
• For Alt. 2 or 3:

1. Cost to lookup RID(s); typically 2-4 IO’s for B+Tree.
2. Cost to retrieve records from RID(s); depends on clustering.

– Clustered index: 1 I/O per page of matching S tuples.
– Unclustered: up to 1 I/O per matching S tuple.

Index Nested Loops Join

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

><R S:

Sort-Merge Join

 Example:

sid sname rating age

22 dustin 7 45.0

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

1. Sort R on join attr(s)
2. Sort S on join attr(s)
3. Scan sorted-R and sorted-S

in tandem, to find matches

6

Cost of Sort-Merge Join
• Cost: Sort R + Sort S + (|R|+|S|)

– But in worst case, last term could be |R|*|S| (very unlikely!)
– Q: what is worst case?

Suppose B = 35 buffer pages:
• Both R and S can be sorted in 2 passes
• Total join cost = 4*1000 + 4*500 + (1000 + 500) = 7500

Suppose B = 300 buffer pages:
• Again, both R and S sorted in 2 passes
• Total join cost = 7500

Block-Nested-Loop cost = 2500 … 15,000

Other Considerations …

1. An important refinement:
Do the join during the final merging pass of sort !
• If have enough memory, can do:

1. Read R and write out sorted runs
2. Read S and write out sorted runs
3. Merge R-runs and S-runs, and find R S matches

Cost = 3*|R| + 3*|S|

Q: how much memory is “enough” (will answer next time …)

><

2. Sort-merge join an especially good choice if:
–one or both inputs are already sorted on join attribute(s)
–output is required to be sorted on join attributes(s)

Q: how to take these savings into account? (stay tuned …)

Summary

• A virtue of relational DBMSs:

 queries are composed of a few basic operators

– The implementation of these operators can be carefully tuned

• Many alternative implementation techniques for each operator
– No universally superior technique for most operators.

• Must consider available alternatives
– Called “Query optimization” -- we will study this topic soon!

