
1

Implementation of
Relational Operations

(Part 2)

 R&G - Chapters 12 and 14

An Alternative to Sorting: Hashing!

• Idea:
– Many of the things we use sort for don’t exploit the

order of the sorted data
– e.g.: removing duplicates in DISTINCT
– e.g.: finding matches in JOIN

• Often good enough to match all tuples with equal
values

• Hashing does this!
– And may be cheaper than sorting! (Hmmm…!)
– But how to do it for data sets bigger than memory??

General Idea

• Two phases:
– Partition: use a hash function h to split tuples into

partitions on disk.
• Key property: all matches live in the same partition.

– ReHash: for each partition on disk, build a main-
memory hash table using a hash function h2

Two Phases

• Partition:

• Rehash:

Partitions
Hash table for partition

Ri (<= B pages)

B main memory buffersDisk

Result

hash
fn
h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Duplicate
Elimination
using Hashing

• read one bucket
at a time

• for each group of
identical tuples,
output one

Partitions
Hash table for partition

Ri (<= B pages)

B main memory buffersDisk

Result

hash
fn
h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Cost of External Hashing

cost = 4*|R| IO’s

2

Memory Requirement

• How big of a table can we hash in two passes?
– B-1 “partitions” result from Phase 0
– Each should be no more than B pages in size
– Answer: B(B-1).

Said differently:
 We can hash a table of size N pages in about space

– Note: assumes hash function distributes records evenly!

• Have a bigger table? Recursive partitioning!

!

N

How does this compare with
external sorting?

Cost of External Sorting

cost = 4*|R| IO’s

Memory Requirement for
External Sorting

• How big of a table can we sort in two passes?
– Each “sorted run” after Phase 0 is of size B
– Can merge up to B-1 sorted runs in Phase 1
– Answer: B(B-1).

Said differently:
 We can sort a table of size N pages in about space

• Have a bigger table? Additional merge passes!

!

N

So which is better ??

• Based on our simple analysis:
– Same memory requirement for 2 passes
– Same IO cost

• Digging deeper …

• Sorting pros:
– Great if input already sorted (or almost sorted)
– Great if need output to be sorted anyway
– Not sensitive to “data skew” or “bad” hash functions

• Hashing pros:
– Highly parallelizable (will discuss later in semester)
– Can exploit extra memory to reduce # IOs (stay tuned…)

Q: Can we use hashing for JOIN ?

before we optimize hashing further …

3

Hash Join

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (B-2 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Cost of Hash Join

• Partitioning phase: read+write both relations
⇒ 2(|R|+|S|) I/Os

• Matching phase: read+write both relations
⇒ |R|+|S| I/Os

• Total cost of 2-pass hash join = 3(|R|+|S|)

Q: what is cost of 2-pass sort join?

Q: how much memory needed for 2-pass sort join?

Q: how much memory needed for 2-pass hash join?

• Have B memory buffers
• Want to hash relation of size N

An important optimization to hashing

N

passes

B B2

1

2

If B < N < B2, will have unused memory …

cost

 N

3N 1

Hybrid Hashing

• Idea: keep one of the hash buckets in memory!

B main memory buffers DiskDisk

Original
Relation OUTPUT

3

INPUT

2

h B-k

Partitions

2

3

B-k

. . .
h3

k-buffer hashtable

Q: how do we choose the value of k?

Cost reduction due to hybrid hashing

• Now:

N

passes

B B2

1

2

cost

 N

3N

Summary: Hashing vs. Sorting

• Sorting pros:
– Good if input already sorted, or need output sorted
– Not sensitive to data skew or bad hash functions

• Hashing pros:
– Often cheaper due to hybrid hashing
– For join: # passes depends on size of smaller relation
– Highly parallelizable

