
Elementary IR:
Scalable Boolean

Text Search

(Compare with R & G 27.1-3)

Information Retrieval: History

• A research field traditionally separate from Databases
– Hans P. Luhn, IBM, 1959: “Keyword in Context (KWIC)”
– G. Salton at Cornell in the 60’s/70’s: SMART

• Around the same time as relational DB revolution
– Tons of research since then

• Especially in the web era
• Products traditionally separate

– Originally, document management systems for libraries,
government, law, etc.

– Gained prominence in recent years due to web search
• Still used for non-web document management. (“Enterprise

search”).

Today: Simple (naïve!) IR

• Boolean Search on keywords
• Goal:

– Show that you already have the tools to do this from your
study of relational DBs

• We’ll skip:
– Text-oriented storage formats
– Intelligent result ranking (hopefully later!)
– Parallelism

• Critical for modern relational DBs too
– Various bells and whistles (lots of little ones!)

• Engineering the specifics of (written) human language
– E.g. dealing with tense and plurals
– E.g. identifying synonyms and related words
– E.g. disambiguating multiple meanings of a word
– E.g. clustering output

IR vs. DBMS

• Seem like very different beasts

• Under the hood, not as different as they might seem
– But in practice, you have to choose between the 2 today

Expect reasonable number of
updates

Read-Mostly. Add docs
occasionally

SQLKeyword search

Generate full answerPage through top k results

Structured dataUnstructured data format

Precise SemanticsImprecise Semantics

DBMSIR

IR’s “Bag of Words” Model

• Typical IR data model:
– Each document is just a bag of words (“terms”)

• Detail 1: “Stop Words”
– Certain words are not helpful, so not placed in the bag
– e.g. real words like “the”
– e.g. HTML tags like <H1>

• Detail 2: “Stemming”
– Using language-specific rules, convert words to basic form
– e.g. “surfing”, “surfed” --> “surf”
– Unfortunately have to do this for each language

• Yuck!

Boolean Text Search

• Find all documents that match a Boolean
containment expression:
– “Windows”

 AND (“Glass” OR “Door”)
 AND NOT “Microsoft”

• Note: query terms are also filtered via
stemming and stop words

• When web search engines say “10,000
documents found”, that’s the Boolean search
result size
– More or less ;-)

Text “Indexes”

• When IR folks say “text index”…
‒ usually mean more than what DB people mean

• In our terms, both “tables” and indexes
– Really a logical schema (i.e. tables)
– With a physical schema (i.e. indexes)
– Usually not stored in a DBMS

• Tables implemented as files in a file system
• We’ll talk more about this decision soon

A Simple Relational Text Index

• Given: a corpus of text files
– Files(docID string, content string)

• Create and populate a table
InvertedFile(term string, docID string)

• Build a B+-tree or Hash index on InvertedFile.term
– Something like “Alternative 3” critical here!!

• Keep lists of dup keys sorted by docID
– Will provide “interesting orders” later on!

• Fancy list compression important, too
• Typically called a postings list by IR people

– Note: URL instead of RID, the web is your “heap file”!
• Can also cache pages and use RIDs

• This is often called an “inverted file” or “inverted index”
– Maps from words -> docs, rather than docs -> words

• Given this, you can now do single-word text search queries!

An Inverted File

• Snippets from:
– Old class web page
– Old microsoft.com

home page
• Search for

– databases
– microsoft

data http://www-inst.eecs.berkeley.edu/~cs186

database http://www-inst.eecs.berkeley.edu/~cs186

date http://www-inst.eecs.berkeley.edu/~cs186

day http://www-inst.eecs.berkeley.edu/~cs186

dbms http://www-inst.eecs.berkeley.edu/~cs186

decision http://www-inst.eecs.berkeley.edu/~cs186

demonstrate http://www-inst.eecs.berkeley.edu/~cs186

description http://www-inst.eecs.berkeley.edu/~cs186

design http://www-inst.eecs.berkeley.edu/~cs186

desire http://www-inst.eecs.berkeley.edu/~cs186

developer http://www.microsoft.com

differ http://www-inst.eecs.berkeley.edu/~cs186

disability http://www.microsoft.com

discussion http://www-inst.eecs.berkeley.edu/~cs186

division http://www-inst.eecs.berkeley.edu/~cs186

do http://www-inst.eecs.berkeley.edu/~cs186

document http://www-inst.eecs.berkeley.edu/~cs186

document http://www.microsoft.com

microsoft http://www.microsoft.com

microsoft http://www-inst.eecs.berkeley.edu/~cs186

midnight http://www-inst.eecs.berkeley.edu/~cs186

midterm http://www-inst.eecs.berkeley.edu/~cs186

minibase http://www-inst.eecs.berkeley.edu/~cs186

million http://www.microsoft.com

monday http://www.microsoft.com

more http://www.microsoft.com

most http://www-inst.eecs.berkeley.edu/~cs186

ms http://www-inst.eecs.berkeley.edu/~cs186

msn http://www.microsoft.com

must http://www-inst.eecs.berkeley.edu/~cs186

necessary http://www-inst.eecs.berkeley.edu/~cs186

need http://www-inst.eecs.berkeley.edu/~cs186

network http://www.microsoft.com

new http://www-inst.eecs.berkeley.edu/~cs186

new http://www.microsoft.com

news http://www.microsoft.com

newsgroup http://www-inst.eecs.berkeley.edu/~cs186

docIDTerm

Handling Boolean Logic
• How to do “term1” OR “term2”?

– Union of two postings lists (docID sets)!
• How to do “term1” AND “term2”?

– Intersection of two postings lists!
• Can be done via merge-join over postings lists
• Remember: postings list per key sorted by docID in index

• How to do “term1” AND NOT “term2”?
– Set subtraction

• Also easy because sorted (basically merge join logic again)
• How to do “term1” OR NOT “term2”

– Union of “term1” and “NOT term2”.
• “Not term2” = all docs not containing term2. Yuck!

– Usually not allowed!
• Query Optimization: what order to handle terms if you

have many ANDs?

Boolean Search in SQL

• (SELECT docID FROM InvertedFile
 WHERE word = “window”
 INTERSECT
 SELECT docID FROM InvertedFile
 WHERE word = “glass” OR word = “door”)
EXCEPT
SELECT docID FROM InvertedFile
 WHERE word=“Microsoft”
ORDER BY magic_rank()

• There’s only one SQL query template in Boolean Search
– Single-table selects, UNION, INTERSECT, EXCEPT

• magic_rank() is the “secret sauce” in the search engines
– Hopefully we’ll study this later in the semester
– Combos of statistics, linguistics, and graph theory tricks!

“Windows” AND (“Glass” OR “Door”)
 AND NOT “Microsoft”

One step fancier: Phrases and “Near”

• Suppose you want a phrase
– E.g. “Happy Days”

• Different schema:
– InvertedFile (term string, position int, docID string)
– Alternative 3 index on term
– Postings lists sorted by (docID, position)

• Post-process the results
– Find “Happy” AND “Days”
– Keep results where positions are 1 off

• Can be done during merge-join to AND the 2 lists!
• Can do a similar thing for “term1” NEAR “term2”

– Position < k off
– Think about refinement to merge-join…

Somewhat better compression

– InvertedFile (term string, position int, docID int)
– Files(docID int, docID string, snippet string, …)
– Btree on InvertedFile.term
– Btree on Docs.docID

– Requires a final join step between typical query
result and Files.docID

• Can do this lazily: cursor to generate a page full of
results

Updates and Text Search

• Text search engines are designed to be query-mostly
– Deletes and modifications are rare
– Can postpone updates (nobody notices, no transactions!)

• Can work off a union of indexes
• Merge them in batch (typically re-bulk-load a new index)

– Can’t afford to go offline for an update?
• Create a 2nd index on a separate machine
• Replace the 1st index with the 2nd!

– So no concurrency control problems
– Can compress to search-friendly, update-unfriendly format
– Can keep postings lists sorted

• For these reasons, text search engines and DBMSs are
usually separate products
– Also, text-search engines tune that one SQL query to death!
– The benefits of a special-case workload.

Lots more tricks in IR
• How to “rank” the output?

– A mix of simple tricks works well
– Some fancier tricks can help (use hyperlink graph)

• Other ways to help users paw through the output?
– Document “clustering” (e.g. Clusty.com)
– Document visualization

• How to use compression for better I/O performance?
– E.g. making postings lists smaller
– Try to make things fit in RAM

• Or in processor caches
• How to deal with synonyms, misspelling, abbreviations?
• How to write a good web crawler?

• We’ll return to some of these later
– The book Managing Gigabytes covers some of the details

{

Recall From the First Lecture

The Access Method

Buffer Management

Disk Space Management

DB

OS

“The Query”

Search String Modifier

Simple
DBMS}

Ranking Algorithm

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB
Concurrency

and
Recovery
Needed

DBMS Search Engine

You Know The Basics!

• “Inverted files” are the workhorses of all text
search engines
– Just B+-tree or Hash indexes on bag-of-words

• Intersect, Union and Set Difference (Except)
– Usually implemented via sorting
– Or can be done with hash or index joins

• Most of the other stuff is not “systems” work
– A lot of it is cleverness in dealing with language
– Both linguistics and statistics (more the latter!)

Revisiting Our IR/DBMS Distinctions
• Semantic Guarantees on Storage

– DBMS guarantees transactional semantics
• If an inserting transaction commits, a subsequent query will see the

update
• Handles multiple concurrent updates correctly

– IR systems do not do this; nobody notices!
• Postpone insertions until convenient
• No model of correct concurrency.
• Can even return incorrect answers for various reasons!

• Data Modeling & Query Complexity
– DBMS supports any schema & queries

• But requires you to define schema
• And SQL is hard to figure out for the average citizen

– IR supports only one schema & query
• No schema design required (unstructured text)
• Trivial (natural?) query language for simple tasks
• No data correlation or analysis capabilities -- “search” only

Revisiting Distinctions, Cont.

• Performance goals
– DBMS supports general SELECT

• plus mix of INSERT, UPDATE, DELETE
• general purpose engine must always perform “well”

– IR systems expect only one stylized SELECT
• plus delayed INSERT, unusual DELETE, no UPDATE.
• special purpose, must run super-fast on “The Query”
• users rarely look at the full answer in Boolean Search

– Postpone any work you can to subsequent index joins
– But make sure you can rank!

Summary

• IR & Relational systems share basic building blocks for
scalability
– IR internal representation is relational!
– Equality indexes (B-trees)
– Iterators
– “Join” algorithms, esp. merge-join
– “Join” ordering and selectivity estimation

• IR constrains queries, schema, promises on semantics
– Affects storage format, indexing and concurrency control
– Affects join algorithms & selectivity estimation

• IR has different performance goals
– Ranking and best answers fast

• Many challenges in IR related to “text engineering”
– But don’t tend to change the scalability infrastructure

IR Buzzwords to Know (so far!)

• Learning this in the context of relational
foundations is fine, but you need to know the
IR lingo!
– Corpus: a collection of documents
– Term: an isolated string (searchable unit)
– Index: a mechanism mapping terms to documents
– Inverted File (= Postings File): a file containing

terms and associated postings lists
– Postings List: a list of pointers (“postings”) to

documents

Exercise!

• Implement Boolean search directly in Postgres
– Using the schemas and indexes here.

• Write a simple script to load files.
• You can ignore stemming and stop-words.

– Run the SQL versions of Boolean queries
• Measure how slow search is in Postgres

– Identify contributing factors in performance
• E.g. how much disk space does the postgres version use (including

indexes) vs. the raw documents vs. the documents gzip’ed
• E.g. is PG identifying the “interesting orders” in the postings lists? (use

EXPLAIN) If not, can you force it to do so?
• Compare PG to an idealized implementation

– Calculate the idealized size of the InvertedFile table for your data
– Use the cost models for IndexScan and MergeJoin to calculate the

expected number of IOs. Distinguish sequential and random Ios.
– Why is PG slow? Storage overhead? Optimizer smarts?

