
1

Concurrency Control

R&G - Chapter 17

Smile, it is the key that fits the
lock of everybody's heart.

Anthony J. D'Angelo,
The College Blue Book

Review

• ACID transaction semantics.
• Today: focus on Isolation property

– Serial schedules safe but slow
– Try to find schedules equivalent to serial …

Conflicting Operations

• Need a tool to decide if 2 schedules are equivalent
• Use notion of “conflicting” operations

• Definition: Two operations conflict if:
– They are by different transactions,
– they are on the same object,
– and at least one of them is a write.

Conflict Serializable Schedules

• Definition: Two schedules are conflict equivalent iff:
– They involve the same actions of the same transactions, and
– every pair of conflicting actions is ordered the same way

• Definition: Schedule S is conflict serializable if:
– S is conflict equivalent to some serial schedule.

• Note, some “serializable” schedules are NOT conflict
serializable
– A price we pay to achieve efficient enforcement.

Conflict Serializability – Intuition

• A schedule S is conflict serializable if:
– You are able to transform S into a serial schedule by

swapping consecutive non-conflicting operations
of different transactions.

• Example:

R(A) R(B)W(A) W(B)

R(A) W(A) R(B) W(B) W(A)

R(B)R(B)

 R(A)

W(B)

 W(A)

W(B)

 R(A)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Serializability (Continued)

• Here’s another example:

• Serializable or not????

R(A) W(A)
R(A) W(A)

NOT!

2

Dependency Graph

• Dependency graph:
– One node per Xact
– Edge from Ti to Tj if:

• An operation Oi of Ti conflicts with an operation Oj of Tj
and

• Oi appears earlier in the schedule than Oj.

• Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic.

Ti Tj

Example

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The
output of T1 depends on T2, and vice-versa.

T1 T2
A

B

Dependency graph

T1: R(A), W(A), R(B), W(B)
T2:
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

An Aside: View Serializability
• Alternative (weaker) notion of serializability.
• Schedules S1 and S2 are view equivalent if:

1. If Ti reads initial value of A in S1, then Ti also reads
initial value of A in S2

2. If Ti reads value of A written by Tj in S1, then Ti
also reads value of A written by Tj in S2

3. If Ti writes final value of A in S1, then Ti also writes
final value of A in S2

• Basically, allows all conflict serializable
schedules + “blind writes”

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

view

Notes on Serializability Definitions
• View Serializability allows (slightly) more

schedules than Conflict Serializability does.
– Problem is that it is difficult to enforce efficiently.

• Neither definition allows all schedules that
you would consider “serializable”.
– This is because they don’t understand the

meanings of the operations or the data.

• In practice, Conflict Serializability is what gets
used, because it can be enforced efficiently.
– To allow more concurrency, some special cases do

get handled separately, such as for travel
reservations, etc.

Two-Phase Locking (2PL)

rules:
– Xact must obtain a S (shared) lock before reading,

and an X (exclusive) lock before writing.
– Xact cannot get new locks after releasing any locks.

––X

–√S

XS

Lock
Compatibility
Matrix

Two-Phase Locking (2PL), cont.

2PL guarantees conflict serializability

time

locks held

release phaseacquisition
phase

But, does not prevent Cascading Aborts.

3

 Strict 2PL

• Problem: Cascading Aborts
• Example: rollback of T1 requires rollback of T2!

• Strict Two-phase Locking (Strict 2PL) protocol:
 Same as 2PL, except:
 Locks released only when transaction completes
 i.e., either:
 (a) transaction has committed (commit record on disk),
 or
 (b) transaction has aborted and rollback is complete.

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A)

 Strict 2PL (continued)

locks held

acquisition
phase

time

release all locks
at end of xact

Next ...

• A few examples

Unlock(B)

Write(B)

B := B +50

Read(B)

PRINT(A+B)

Unlock(B)

Read(B)

Lock_X(B)

Lock_S(B)

Unlock(A)

Read(A)

Unlock(A)

Write(A)

A: = A-50

Lock_S(A)Read(A)

Lock_X(A)

Non-2PL, A= 1000, B=2000, Output =?

PRINT(A+B)

Unlock(B)

Read(B)

Unlock(A)Unlock(B)

Write(B)

B := B +50

Read(B)

Lock_S(B)

Read(A)

Unlock(A)

Lock_X(B)

Write(A)

A: = A-50

Lock_S(A)Read(A)

Lock_X(A)

2PL, A= 1000, B=2000, Output =?

Unlock(B)

Unlock(A)

PRINT(A+B)

Read(B)

Lock_S(B)

Read(A)

Unlock(B)

Unlock(A)

Write(B)

B := B +50

Read(B)

Lock_X(B)

Write(A)

A: = A-50

Lock_S(A)Read(A)

Lock_X(A)

Strict 2PL, A= 1000, B=2000, Output =?

4

Venn Diagram for Schedules

All Schedules

Avoid
Cascading
Abort

Serial

View Serializable

Conflict Serializable

 Which schedules does Strict 2PL allow?

All Schedules

Avoid
Cascading
Abort

Serial

View Serializable

Conflict Serializable

Lock Management

• Lock and unlock requests handled by Lock Manager

• LM keeps an entry for each currently held lock.
• Entry contains:

– List of xacts currently holding lock
– Type of lock held (shared or exclusive)
– Queue of lock requests

Lock Management, cont.

• When lock request arrives:
– Does any other xact hold a conflicting lock?

• If no, grant the lock.
• If yes, put requestor into wait queue.

• Lock upgrade:
– xact with shared lock can request to upgrade to exclusive

Lock_X(B)

Write(A)

A: = A-50

Read(A)

Lock_S(A)

Read(B)

Lock_S(B)

Lock_X(A)

Example
Deadlocks

• Deadlock: Cycle of transactions waiting for locks to
be released by each other.

• Two ways of dealing with deadlocks:
– prevention
– detection

• Many systems just punt and use Timeouts
– What are the dangers with this approach?

5

Deadlock Detection

• Create and maintain a “waits-for” graph
• Periodically check for cycles in graph

Deadlock Detection (Continued)

Example:

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1 T2

T4 T3

Deadlock Prevention

• Assign priorities based on timestamps.
• Say Ti wants a lock that Tj holds
 Two policies are possible:

Wait-Die: If Ti has higher priority, Ti waits for Tj;
otherwise Ti aborts

Wound-wait: If Ti has higher priority, Tj aborts;
otherwise Ti waits

• Why do these schemes guarantee no deadlocks?

• Important detail: If a transaction re-starts, make sure
it gets its original timestamp. -- Why?

Summary

• Correctness criterion for isolation is “serializability”.
– In practice, we use “conflict serializability,”

which is somewhat more restrictive but easy to enforce.

• Two Phase Locking and Strict 2PL: Locks implement the
notions of conflict directly.
– The lock manager keeps track of the locks issued.
– Deadlocks may arise; can either be prevented or detected.

