
1

Text/Web Search II:
Ranking & Crawling

Review: Simple Relational Text Index

• Create and populate a table
InvertedFile(term string, docID

string)

• Build a B+-tree or Hash index
on InvertedFile.term
– Use something like “Alternative

3” index
• Keep lists at the bottom sorted by

docID
• Typically called a “postings list”

Term

Berkeley:
42
49
57
…

Boolean Search in SQL

SELECT IB.docID
 FROM InvertedFile IB, InvertedFile ID, InvertedFile IR
 WHERE IB.docID = ID.docID AND ID.docID = IR.docID
 AND IB.term = “Berkeley”
 AND ID.term = “Database”
 AND IR.term = “Research”
ORDER BY magic_rank()

• This time we wrote it as a join
– Last time wrote it as an INTERSECT

• Recall our query plan
– An indexscan on each Ix.term “instance” in FROM clause
– A merge-join of the 3 indexscans (ordered by docID)

• magic_rank() is the “secret sauce” in the search engines
– Will require rewriting this query somewhat…

“Berkeley Database Research”

Classical IR Ranking

• Abstraction: Vector space model
– We’ll think of every document as a “vector”

• Imagine there are 10,000 possible terms
• Each document (bag of words) can be represented as an

array of 10,000 counts
• This array can be thought of as a point in 10,000-

dimensional space

– Measure “distance” between two vectors:
“similarity” of two documents

• A query is just a short document
– Rank all docs by their distance to the query

“document”!

• What’s the right distance metric?
– Problem 1: two long docs seem more similar to each other

than to short docs
• Solution: normalize each dimension by vector’s (Euclidean)

length
• Now every doc is a point on the unit sphere

– Now: the dot-product (sum of products) of two normalized
vectors happens to be cosine of the angle between them!

• (dj · dk)/(|dj||dk|) = cos(θ)
– to see this in 2D, “rotate” so one vector is (1,0)

– BTW: for normalized vectors, cosine ranking is the same as
ranking by Euclidean distance

θ

Classical IR Ranking TF × IDF

• Counting occurrences isn’t a good way to weight each term
– Want to favor repeated terms in this doc
– Want to favor unusual words in this doc

• TF × IDF (Term Frequency × Inverse Doc Frequency)
– For each doc d

• DocTermRank = #occurrences of t in d TF
 × log((total #docs)/(#docs with this term)) IDF

– Instead of using counts in the vector, use DocTermRank

• Let’s add some more to our schema
– TermInfo(term string, numDocs int) -- used to compute IDF

• This is a “materialized” view on the invertedFile table.
– What’s the SQL for the view?

– InvertedFile (term string, docID int64, DocTermRank float)
• Why not just store TF rather than DocTermRank?

What is the idf
of a term that
occurs in all
of the docs?

In almost no docs?

2

SELECT docID,
 (<Berkeley-tfidf>*bTFIDF +
 <Database-tfidf>*dTFIDF +
 <Research-TFIDF>*rTFIDF>) AS magic_rank
 FROM BooleanResult
ORDER BY magic_rank;

In SQL Again…

CREATE VIEW BooleanResult AS (
SELECT IB.docID, IB.DocTermRank as bTFIDF,
 ID.DocTermRank as dTFIDF,
 IR.DocTermRank as rTFIDF,
 FROM InvertedFile IB, InvertedFile ID, InvertedFile IR
 WHERE IB.docID = ID.docID AND ID.docID = IR.docID
 AND IB.term = “Berkeley”
 AND ID.term = “Database”
 AND IR.term = “Research”);

–InvertedFile (term string, docID int64,
 DocTermRank float)

Simple
Boolean
Search

Cosine similarity.
Note that the query
“doc” vector is a
constant

Ranking

• We’ll only rank Boolean results
– Note: this is just a heuristic! (Why?)

• What’s a fix? Is it feasible?
– Recall: a merge-join of the postings-lists from each term, sorted by

docID
• While merging postings lists…

– For each docID that matches on all terms (Bool)
• Compute cosine distance to query

– I.e. For all terms, Sum of
 (product of query-term-rank and DocTermRank)

• This collapses the view in the previous slide
• What’s wrong with this picture??

0.11157

0.12649

0.36142

DTRankdocID

0.002121

0.87649

0.98729

DTRankdocID

0.32157

0.65449

0.13716

DTRankdocID

Σi qTermRanki*DocTermRanki

Sort

Berkeley Database Research

Parallelizing (!!)

• Partition
InvertedFile by
DocID
– Parallel “top k”

• Partition
InvertedFile by term
– Distributed Join
– top k: parallel or

not?
• Pros/cons?

– What are the
relevant metrics?

0.11
1

5
7

0.12
6

4
9

0.36
1

4
2

DT
Ran
k

d
o
c
I
D

0.00
2

1
2
1

0.87
6

4
9

0.98
7

2
9

DT
Ran
k

d
o
c
I
D

0.32
1

5
7

0.65
4

4
9

0.13
7

1
6

DT
Ran
k

d
o
c
I
D

Σi

Berkeley Database Research

top k

0.11
1

5
7

0.12
6

4
9

0.36
1

4
2

DT
Ran
k

d
o
c
I
D

0.00
2

1
2
1

0.87
6

4
9

0.98
7

2
9

DT
Ran
k

d
o
c
I
D

0.32
1

5
7

0.65
4

4
9

0.13
7

1
6

DT
Ran
k

d
o
c
I
D

Σi

Berkeley Database Research

0.11
1

5
7

0.12
6

4
9

0.36
1

4
2

DT
Ran
k

d
o
c
I
D

Berkeley

0.11
1

5
7

0.12
6

4
9

0.36
1

4
2

DT
Ran
k

d
o
c
I
D

Database

0.11
1

5
7

0.12
6

4
9

0.36
1

4
2

DT
Ran
k

d
o
c
I
D

Research

Join

top k

Note that there’s usually another join
stage
• Docs(docID, title, URL, crawldate, snippet)

SELECT title, URL, crawldate, snippet
 (<Berkeley-tfidf>*bTFIDF +
 <Database-tfidf>*dTFIDF +
 <Research-TFIDF>*rTFIDF>) AS magic_rank
 FROM BooleanResult, Docs
 WHERE BooleanResult.docID = Docs.docID
ORDER BY magic_rank;

• Typically rank before the join with Docs
• not an “interesting order”
• so a fully parallel join with Docs

• and/or you can replicate the Docs table

Quality of a non-Boolean Answer

• Suppose only top k answers are retrieved
• Two common metrics:

– Precision: |Correct ∩ Retrieved| / |Retrieved|
– Recall: |Correct ∩ Retrieved| / |Correct|

CorrectRetrieved

Phrase & Proximity Ranking

• Query: “The Who”
– How many matches?

• Our previous query plan?

– Ranking quality?
• One idea: index all 2-word runs in a doc

– “bigrams”, can generalize to “n-grams”
– give higher rank to bigram matches

• More generally, proximity matching
– how many words/characters apart?

• add a “list of positions” field to the inverted index
• ranking function scans these two lists to compute

proximate usage, cook this into the overall rank

0.11157

0.12649

0.36142

DTRan
k

do
cI
D

0.32157

0.65449

0.13716

DTRan
k

do
cI
D

Σi qTermRanki *DocTermRanki

Sort

Berkeley Database

3

Some Additional Ranking Tricks

• Query expansion, suggestions
– Can do similarity lookups on terms, expand/modify people’s queries

• Fix misspellings
– E.g. via an inverted index on q-grams of letters
– Trigrams for “misspelling” are {mis, iss, ssp, spe, pel, ell, lli, lin,

ing}
• Document expansion

– Can add terms to a doc before inserting into inverted file
• E.g. in “anchor text” of refs to the doc
• E.g. by classifying docs (e.g. “english”, “japanese”, “adult”)

• Not all occurrences are created equal
– Mess with DocTermRank based on:

• Fonts, position in doc (title, etc.)
• Don’t forget to normalize: “tugs” doc in direction of heavier weighted

terms

Hypertext Ranking

• On the web, we have more information to exploit
– The hyperlinks (and their anchor text)
– Ideas from Social Network Theory (Citation Analysis)
– “Hubs and Authorities” (Clever), “PageRank” (Google)

• Intuition (Google’s PageRank)
– If you are important, and you link to me, then I’m important
– Recursive definition --> recursive computation

1. Everybody starts with weight 1.0
2. Share your weight among all your outlinks
3. Repeat (2) until things converge

– Note: computes the first eigenvector of the adjacency matrix
• And you thought linear algebra was boring :-)

– Leaving out some details here …
• PageRank sure seems to help

– But rumor says that other factors matter as much or more
• Anchor text, title/bold text, etc. --> much tweaking over time

1.0

1/3

1/3

1/3

1/27

1/100

Random Notes from the Real World
• The web’s dictionary of terms is HUGE. Includes:

– numerals: “1”, “2”, “3”, … “987364903”, …
– codes: “_bt_prefixKeyCompress”, “palloc”, …
– misspellings: “teh”, “quik”, “browne”, “focs”
– multiple languages: “hola”, “bonjour”, “ここんんににちちはは” (Japanese),

etc.
• Web spam

– Try to get top-rated. Companies will help you with this!
– Imagine how to spam TF x IDF

• “Stanford Stanford Stanford Stanford Stanford Stanford Stanford Stanford
Stanford … Stanford lost The Big Game”

• And use white text on a white background :-)

– Imagine spamming PageRank…?!
• Some “real world” stuff makes life easier

– Terms in queries are Zipfian! Can cache answers in memory effectively.
– Queries are usually little (1-2 words)
– Users don’t notice minor inconsistencies in answers

• Big challenges in running thousands of machines, 24x7 service!

Building a Crawler

• Duh! This is graph traversal.
crawl(URL) {

doc = fetch(url);

foreach href in the URL
crawl(*href);

}

• Well yes, but:
– better not sit around waiting on each fetch
– better run in parallel on many machines
– better be “polite”
– probably won’t “finish” before the docs change

• need a “revisit policy”

– all sorts of yucky URL details
• dynamic HTML, “spider traps”
• different URLs for the same data (mirrors, .. in paths, etc.)

Single-Site Crawler

• multiple outstanding fetches
– each with a modest timeout

• don’t let the remote site choose it!

– typically a multithreaded component
• but can typically scale to more fetches/machine via a single-

threaded “event-driven” approach

• a set of pending fetches
– this is your crawl “frontier”
– can grow to be quite big!
– need to manage this wisely to pick next sites to fetch
– what traversal would a simple FIFO queue for fetches give

you?

Crawl ordering

• What do you think?
– Breadth first vs. Depth first?
– Content driven? What metric would you use?

• What are our goals
– Find good pages soon (may not finish before

restart)
– Politeness

4

Crawl Ordering, cont.

• Good to find high PageRank pages, right?
– Could prioritize based on knowledge of P.R.

• E.g. from earlier crawls

– Research sez: breadth-first actually finds high P.R.
pages pretty well though

• Random doesn’t do badly either

– Other research ideas to kind of approximate P.R.
online

– Have to be at the search engines to really know
how this is best done

• Part of the secret sauce!
• Hard to recreate without a big cluster and lots of NW

Scaling up

• How do you parallelize a crawler?
– Roughly, you need to partition the frontier in the

manner we saw last week
– Load balancing requires some thought

• partition by URL prefix (domain name)? by entire URL?

• DNS lookup overhead can be a substantial
bottleneck
– E.g. the mapping from www.cs.berkeley.edu to

169.229.60.105
– Pays to maintain local DNS caches at each node

More on web crawlers?

• There is a quite detailed Wikipedia page
– Focus on academic research, unfortunately
– Still, a lot of this stuff came out of universities

• Wisconsin (webcrawler ‘94), Berkeley (inktomi ‘96),
Stanford (google ‘99)

