
Parallel Data Management

Introduction to Database Systems 1

Parallel DBMS

!"#$%&'()'*+%',%""%-&.%#/0'1230'4#.5'&+6%'67.%-#7"'8-+6

*#6'9-7)0':#;-+&+8.'<%&%7-;5=''!%%'7"&+>

Module 9, Lecture 1

Introduction to Database Systems 2

Why Parallel Access To Data?

1 Terabyte

10 MB/s

 At 10 MB/s

1.2 days to scan

1 Terabyte

1,000 x parallel
1.5 minute to scan.

Parallelism:
 divide a big problem
 into many smaller ones
 to be solved in parallel.

B
andw

idth

Introduction to Database Systems 3

Parallel DBMS: Intro
! Parallelism is natural to DBMS processing

– Pipeline parallelism: many machines each doing one
step in a multi-step process.

– Partition parallelism: many machines doing the
same thing to different pieces of data.

– Both are natural in DBMS!

Pipeline

Partition

Any
Sequential
 Program

Any
Sequential
 Program

SequentialSequential SequentialSequential
Any

Sequential
 Program

Any
Sequential
 Program

outputs split N ways, inputs merge M ways

Introduction to Database Systems 4

DBMS: The | | Success Story

! DBMSs are the most (only?) successful
application of parallelism.
– Teradata, Tandem vs. Thinking Machines, KSR..
– Every major DBMS vendor has some | | server
– Workstation manufacturers now depend on | | DB

server sales.

! Reasons for success:
– Bulk-processing (= partition | | -ism).
– Natural pipelining.
– Inexpensive hardware can do the trick!
– Users/app-programmers don’t need to think in | |

Introduction to Database Systems 5

Some | | Terminology

! Speed-Up
– More resources means

proportionally less time
for given amount of data.

! Scale-Up
– If resources increased in

proportion to increase in
data size, time is constant.

degree of | | -ism

X
ac

t/
se

c.
(t
hr

ou
gh

p
u
t) Ideal

degree of | | -ism

se
c.
/X

ac
t

(r
es

p
on

se
 ti

m
e) Ideal

Introduction to Database Systems 6

Architecture Issue: Shared What?

Shared Memory
(SMP)

Shared Disk Shared Nothing
 (network)

CLIENTS CLIENTSCLIENTS

Memory

Processors

Easy to program
Expensive to build
Difficult to scaleup

Hard to program
Cheap to build
Easy to scaleup

Sequent, SGI, Sun VMScluster, Sysplex Tandem, Teradata, SP2

Introduction to Database Systems 8

Different Types of DBMS | | -ism

! Intra-operator parallelism
– get all machines working to compute a given

operation (scan, sort, join)

! Inter-operator parallelism
– each operator may run concurrently on a different

site (exploits pipelining)

! Inter-query parallelism
– different queries run on different sites

! We’ll focus on intra-operator | | -ism

Introduction to Database Systems 9

Automatic Data Partitioning

Partitioning a table:
Range Hash Round Robin

Shared disk and memory less sensitive to partitioning,
Shared nothing benefits from "good" partitioning

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

Good for equijoins,
range queries
group-by

Good for equijoins Good to spread load

Introduction to Database Systems 10

Parallel Scans

! Scan in parallel, and merge.
! Selection may not require all sites for range or

hash partitioning.
! Indexes can be built at each partition.
! Question: How do indexes differ in the

different schemes?
– Think about both lookups and inserts!
– What about unique indexes?

Introduction to Database Systems 11

Parallel Sorting

! Current records:
– 8.5 Gb/minute, shared-nothing; Datamation

benchmark in 2.41 secs (UCB students!
http://now.cs.berkeley.edu/NowSort/)

! Idea:
– Scan in parallel, and range-partition as you go.
– As tuples come in, begin “local” sorting on each
– Resulting data is sorted, and range-partitioned.
– Problem: skew!
– Solution: “sample” the data at start to determine

partition points.

Introduction to Database Systems 12Jim Gray & Gordon Bell: VLDB 95 Parallel Database Systems Survey

Parallel Aggregates

A...E F...J K...N O...S T...Z

A Table

Count Count Count Count Count

Count

! For each aggregate function, need a decomposition:
– count(S) = ! count(s(i)), ditto for sum()
– avg(S) = (! sum(s(i))) / ! count(s(i))
– and so on...

! For groups:
– Sub-aggregate groups close to the source.
– Pass each sub-aggregate to its group’s site.

" Chosen via a hash fn.

EXAMPLE

Introduction to Database Systems 13

Parallel Joins

! Nested loop:
– Each outer tuple must be compared with each

inner tuple that might join.
– Easy for range partitioning on join cols, hard

otherwise!

! Sort-Merge (or plain Merge-Join):
– Sorting gives range-partitioning.

" But what about handling 2 skews?
– Merging partitioned tables is local.

Introduction to Database Systems 14

Parallel Hash Join

! In first phase, partitions get distributed to
different sites:
– A good hash function automatically distributes

work evenly!

! Do second phase at each site.
! Almost always the winner for equi-join.

Original Relations

(R then S)

OUTPUT

2

B main memory buffers DiskDisk

INPUT

1

hash
function

h
B-1

Partitions

1

2

B-1

. . .

P
h
as

e
1

Introduction to Database Systems 15

Dataflow Network for | | Join

! Good use of split/merge makes it easier to
build parallel versions of sequential join code.

Introduction to Database Systems 16

Complex Parallel Query Plans

! Complex Queries: Inter-Operator parallelism
– Pipelining between operators:

" note that sort and phase 1 of hash-join block the
pipeline!!

– Bushy Trees

A B R S

Sites 1-4 Sites 5-8

Sites 1-8

Introduction to Database Systems 18

Observations

! It is relatively easy to build a fast parallel
query executor
– S.M.O.P.

! It is hard to write a robust and world-class
parallel query optimizer.
– There are many tricks.
– One quickly hits the complexity barrier.
– Still open research!

Introduction to Database Systems 19

Parallel Query Optimization

! Common approach: 2 phases
– Pick best sequential plan (System R algorithm)
– Pick degree of parallelism based on current

system parameters.

! “Bind” operators to processors
– Take query tree, “decorate” as in previous picture.

Introduction to Database Systems 20

! Best serial plan != Best | | plan! Why?
! Trivial counter-example:

– Table partitioned with local secondary index at
two nodes

– Range query: all of node 1 and 1% of node 2.
– Node 1 should do a scan of its partition.
– Node 2 should use secondary index.

! SELECT *
 FROM telephone_book
 WHERE name < “NoGood”;

What’s Wrong With That?

N..Z

Table

Scan

A..M

Index

Scan

 Google Approach to
Systems Engineering

Prof. Christof Fetzer, Ph.D.
Heinz-Nixdorf Endowed Chair for

Systems Engineering
TU Dresden

Prof. Christof Fetzer, TU Dresden

Localize: Network Architecture

© Nasa

Prof. Christof Fetzer, TU Dresden

Approach [2]

! Goal:
" Hide the complexity of parallelism, data

distribution and fault-tolerance

! Approach: MapReduce
" Simplify programming by hiding these issues in a

library
" The programmer focuses on the problem at hand

(e.g., counting URL access frequency)
" Two phase approach:

! Map: generates a list of intermediate results
! Reduce: generates list of final results

Prof. Christof Fetzer, TU Dresden

Map

! Produces a list of intermediate results
! Name comes from map function in LISP

" (map 'list #’+ '(1 2 3) '(1 2 3)) => (2 4 6)

! Example:
" Count the number of words over a collection of documents
" Input: list(document, content)
" Output: list(word, total_count)

map(document, content) {

for each word in content

emit(word, “1”)

}

Prof. Christof Fetzer, TU Dresden

Reduce

! Reduce combines intermediate results
! Name comes from reduce function in LISP

" (reduce #’+ '(1 2 3 4 5)) => 15

! Example:
" Intermediate result: list(word, list(value))

reduce(word, values) {

result = 0;

 for each value in values

result += value

 emitString(w, result)

}

Prof. Christof Fetzer, TU Dresden

Implementation Architecture [2]

Prof. Christof Fetzer, TU Dresden

Combiner Function

! Problem:
" intermediate results can be quite verbose

" e.g., (“the”, 1) could occur many times in previous example

! Approach:
" perform a local reduction before writing intermediate

results

" typically, combiner same function as reduce func

! This will reduce the run-time because less writing to
disk and across the network

Prof. Christof Fetzer, TU Dresden

Problem: Stragglers

! Often some machines are late in their replies
" slow disk, overloaded, etc

! Approach:
" when only few tasks left to execute, start backup

tasks
" a task completes when either primary or backup

completes task

! Performance:
" without backup, sort (->) takes 44% longer

Prof. Christof Fetzer, TU Dresden

Machine Uptime (1999 data, NT)

FROM:

Failure data analysis of a LAN of Windows NT based computers

Kalyanakrishnam, M.; Kalbarczyk, Z.; Iyer, R.;

Reliable Distributed Systems, 1999. Proceedings of the 18th IEEE Symposium on19-22 Oct. 1999

Page(s):178 - 187

Prof. Christof Fetzer, TU Dresden

Implications

! Probability that a given machine fails might be
sufficiently low for some jobs
" Probability that no machine fails is typically not

acceptable for large jobs (many machines and/or
long runtime)

! Software needs to be able to cope with
failures!

Prof. Christof Fetzer, TU Dresden

Fault Tolerance

! Crash of worker
" all - even finished - tasks are redone

! Crash of leader
" crash of leader process

-> restart process with checkpoint

" crash of leader machine
 -> unlikely - restart computation

" redo computation

Prof. Christof Fetzer, TU Dresden

Software Fault Tolerance

! map and reduce might crash for certain
records
" often it is not possible to fix all bugs -> need to

live with the bugs

" deterministic crashes prevent termination

" when function crashes, it sends msg to master
saying that it has crashed on certain record

" master will give up to retry after crashing multiple
times on some record

Prof. Christof Fetzer, TU Dresden

Usage of MapReduce @ Google [2]

Prof. Christof Fetzer, TU Dresden

Workload (August 2004) [2]

