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Parallel DBMS
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Why Parallel Access To Data?

1 Terabyte

10 MB/s

          At 10 MB/s

1.2 days to scan  

1 Terabyte

1,000 x parallel
1.5 minute to scan.

Parallelism:
 divide a big problem
   into many smaller ones
     to be solved in parallel.
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Parallel DBMS: Intro
! Parallelism is natural to DBMS processing

– Pipeline parallelism: many machines each doing one
step in a multi-step process.

– Partition parallelism: many machines doing the
same thing to different pieces of data.

– Both are natural in DBMS!

Pipeline

Partition

Any 
Sequential
 Program

Any 
Sequential
 Program

SequentialSequential SequentialSequential
Any 

Sequential
 Program

Any 
Sequential
 Program

outputs split N ways, inputs merge M ways
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DBMS: The | |  Success Story

! DBMSs are the most (only?) successful
application of parallelism.
– Teradata, Tandem vs. Thinking Machines, KSR..
– Every major DBMS vendor has some | |  server
– Workstation manufacturers now depend on | |  DB

server sales.

! Reasons for success:
– Bulk-processing (= partition | | -ism).
– Natural pipelining.
– Inexpensive hardware can do the trick!
– Users/app-programmers don’t need to think in | |



Introduction to Database Systems 5

Some | |  Terminology

! Speed-Up
– More resources means

proportionally less time
for given amount of data.

! Scale-Up
– If resources increased in

proportion to increase in
data size, time is constant.
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Architecture Issue: Shared What?

Shared Memory 
(SMP)

Shared Disk Shared Nothing
 (network)

CLIENTS CLIENTSCLIENTS

Memory

Processors

Easy to program
Expensive to build
Difficult to scaleup

Hard to program
Cheap to build
Easy to scaleup

Sequent, SGI, Sun VMScluster, Sysplex Tandem, Teradata, SP2
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Different Types of DBMS | | -ism

! Intra-operator parallelism
– get all machines working to compute a given

operation (scan, sort, join)

! Inter-operator parallelism
– each operator may run concurrently on a different

site (exploits pipelining)

! Inter-query parallelism
– different queries run on different sites

! We’ll focus on intra-operator | | -ism
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Automatic Data Partitioning

Partitioning a table:
Range Hash Round Robin

Shared disk and memory less sensitive to partitioning, 
Shared nothing benefits from "good" partitioning 

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

Good for equijoins, 
range queries
group-by

Good for equijoins Good to spread load
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Parallel Scans

! Scan in parallel, and merge.
! Selection may not require all sites for range or

hash partitioning.
! Indexes can be built at each partition.
! Question: How do indexes differ in the

different schemes?
– Think about both lookups and inserts!
– What about unique indexes?
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Parallel Sorting

! Current records:
– 8.5 Gb/minute, shared-nothing; Datamation

benchmark in 2.41 secs  (UCB students!
http://now.cs.berkeley.edu/NowSort/)

! Idea:
– Scan in parallel, and range-partition as you go.
– As tuples come in, begin “local” sorting on each
– Resulting data is sorted, and range-partitioned.
– Problem: skew!
– Solution: “sample” the data at start to determine

partition points.
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Parallel Aggregates

A...E F...J K...N O...S T...Z

A Table

Count Count Count Count Count

Count

! For each aggregate function, need a decomposition:
– count(S) = ! count(s(i)), ditto for sum()
– avg(S) = (! sum(s(i))) /  ! count(s(i))
– and so on...

! For groups:
– Sub-aggregate groups close to the source.
– Pass each sub-aggregate to its group’s site.

" Chosen via a hash fn.



EXAMPLE
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Parallel Joins

! Nested loop:
– Each outer tuple must be compared with each

inner tuple that might join.
– Easy for range partitioning on join cols, hard

otherwise!

! Sort-Merge (or plain Merge-Join):
– Sorting gives range-partitioning.

" But what about handling 2 skews?
– Merging partitioned tables is local.
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Parallel Hash Join

! In first phase, partitions get distributed to
different sites:
– A good hash function automatically distributes

work evenly!

! Do second phase at each site.
! Almost always the winner for equi-join.
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Dataflow Network for | |  Join

! Good use of split/merge makes it easier to
build parallel versions of sequential join code.
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Complex Parallel Query Plans

! Complex Queries: Inter-Operator parallelism
– Pipelining between operators:

" note that sort and phase 1 of hash-join block the
pipeline!!

– Bushy Trees

A B R S

Sites 1-4 Sites 5-8

Sites 1-8
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Observations

! It is relatively easy to build a fast parallel
query executor
– S.M.O.P.

! It is hard to write a robust and world-class
parallel query optimizer.
– There are many tricks.
– One quickly hits the complexity barrier.
– Still open research!
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Parallel Query Optimization

! Common approach: 2 phases
– Pick best sequential plan (System R algorithm)
– Pick degree of parallelism based on current

system parameters.

! “Bind” operators to processors
– Take query tree, “decorate” as in previous picture.
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! Best serial plan != Best | |  plan!  Why?
! Trivial counter-example:

– Table partitioned with local secondary index at
two nodes

– Range query: all of node 1 and 1% of node 2.
– Node 1 should do a scan of its partition.
– Node 2 should use secondary index.

! SELECT *
       FROM telephone_book
    WHERE name < “NoGood”;

What’s Wrong With That?

N..Z

Table

Scan

A..M

Index 

Scan
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Localize: Network Architecture
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Approach [2]

! Goal:
" Hide the complexity of parallelism, data

distribution and fault-tolerance

! Approach: MapReduce
" Simplify programming by hiding these issues in a

library
" The programmer focuses on the problem at hand

(e.g., counting URL access frequency)
" Two phase approach:

! Map: generates a list of intermediate results
! Reduce: generates list of final results
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Map

! Produces a list of intermediate results
! Name comes from map function in LISP

" (map 'list #’+ '(1 2 3) '(1 2 3)) =>  (2 4 6)

! Example:
" Count the number of words over a collection of documents
" Input: list(document, content)
" Output: list(word, total_count)

map(document, content) {

for each word in content

emit(word, “1”)

}
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Reduce

! Reduce combines intermediate results
! Name comes from reduce function in LISP

" (reduce #’+ '(1 2 3 4 5)) =>  15

! Example:
" Intermediate result: list(word, list(value))

reduce(word, values) {

result = 0;

   for each value in values

result += value

   emitString(w, result)

}
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Implementation Architecture [2]
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Combiner Function

! Problem:
" intermediate results can be quite verbose

" e.g., (“the”, 1) could occur many times in previous example

! Approach:
" perform a local reduction before writing intermediate

results

" typically, combiner same function as reduce func

! This will reduce the run-time because less writing to
disk and across the network
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Problem: Stragglers

! Often some machines are late in their replies
" slow disk, overloaded, etc

! Approach:
" when only few tasks left to execute, start backup

tasks
" a task completes when either primary or backup

completes task

! Performance:
" without backup, sort (->) takes 44% longer
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Machine Uptime (1999 data, NT)

FROM:

Failure data analysis of a LAN of Windows NT based computers

Kalyanakrishnam, M.; Kalbarczyk, Z.; Iyer, R.;

Reliable Distributed Systems, 1999. Proceedings of the 18th IEEE Symposium on19-22 Oct. 1999 

Page(s):178 - 187 
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Implications

! Probability that a given machine fails might be
sufficiently low for some jobs
" Probability that no machine fails is typically not

acceptable for large jobs (many machines and/or
long runtime)

! Software needs to be able to cope with
failures!
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Fault Tolerance

! Crash of worker
" all - even finished - tasks are redone

! Crash of leader
" crash of leader process

-> restart process with checkpoint

" crash of leader machine
  -> unlikely - restart computation

" redo computation



Prof. Christof Fetzer, TU Dresden

Software Fault Tolerance

! map and reduce might crash for certain
records
" often it is not possible to fix all bugs -> need to

live with the bugs

" deterministic crashes prevent termination

" when function crashes, it sends msg to master
saying that it has crashed on certain record

" master will give up to retry after crashing multiple
times on some record



Prof. Christof Fetzer, TU Dresden

Usage of MapReduce @ Google [2]
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Workload (August 2004) [2]


