
CS 186 Haber/Roth
Spring 2007 UC Berkeley

- 1 -

Homework 5: Web Application
bearTunes

Due @ 10:00 PM on Tuesday, May 1st

Overview
For this assignment, you’ll be implementing portions of a database-backed web
application using Ruby on Rails. If you’ve been ignoring the buzz, Ruby on Rails is the
hot new web application framework that makes development (relatively) quick and
(usually) painless. After spending the first two programming assignments hacking away
at the dark underbelly of a DBMS, you now get to take a step back and put all of that
functionality to use! That something is bearTunes, a web application used to catalog
music.

Why Ruby on Rails?
The guiding principle of Ruby on Rails is “convention over configuration.” Based on
some simple assumptions about naming conventions, it does a lot of the gross
administrative junk for you, making application development much faster and more bug-
free. It lets you focus on the application logic without having to get bogged down in
configuration issues. To further simplify things, the Rails architecture draws clean lines
between the different functional pieces of your application architecture: Model,
Controller, and View. (You’ll find all of the files in the beartunes/app/* directories,
labeled pretty much as expected).

For a quick tutorial on how to use Ruby on Rails, check out this site:
http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html

Model
The Model consists of the classes representing your database tables. For each table in
your database, there will be a corresponding Model class. You’ll never have to directly
communicate with your database: all actions are carried out through the Model classes.
Think of them as providing an API that your Ruby application uses to access the database
backend (in this case, Postgresql). You won’t have to make any modifications to any of
the Models for this project, but you should take a look at the files just to get familiar with
them.

Controller
The Controller is where you specify what data should be retrieved from the database.
The code in the Controller retrieves and manipulates data from the Model, possibly based
on user input, and then gives it to the View so that it can be displayed. Here is where the

CS 186 Haber/Roth
Spring 2007 UC Berkeley

- 2 -

necessary SQL commands will be generated; you have the option of writing the queries
yourself (using the command find_by_sql), or just using find to automatically generate
the queries, based on the given parameters. Each action defined in the Controller classes
will compute values (or sets of tuples) and store them in variables, and the corresponding
View class can reference those variables and display them to the user. For example, to
retrieve all album tuples and their associated artists, you would include the following
code in your Controller:

@albums = Album.find(:all, :include => "artist")

Or, to achieve the same results:

@albums = find_by_sql(“select * from albums A1, artists A2
where A1.artist_id = A2.id)

View
The View controls the display of your results in the web browser. In this case, that
comes in the form of HTML sprinkled with embedded Ruby code. The design and layout
of your web pages will all be specified here. There will be one .rhtml file for each action
in the Controller classes. The format of these files is standard HTML, with all Ruby code
enclosed with percent-signs: <% something like this %>. Within the Ruby code snippets,
you can access the values passed in from the Controller by sticking a @ at the start of the
variable name. So, for example, if the following variable assignment appeared in your
Controller:

@artists = Artist.find(:all)

To print out the names of all of the artists, you would include the following code in your
View:

<% @artists.each do |artist| %>
 <%= artist.name %>

<% end %>

Setup
Before you get to work, you have to set up your environment. You will be able to run
this project on the following inst machines: pentagon, rhombus, or cube. For this project
you’ll be running your own copy of both the database and the webserver. First, make a
new directory and cd into it, then call the following command:

setuphw5

When that finishes, you should see two new directories: beartunes/ and pgdata/.
To start up the application, move into the beartunes/ directory and call the following
command:

CS 186 Haber/Roth
Spring 2007 UC Berkeley

- 3 -

./RUN_SERVER

This script will start up Postgresql and the WEBrick, the webserver. Don’t run this
script in the background! If you need access to the terminal, open another one. When
you’re finished, simply press CTRL-C to close down both the database and the
webserver.

Accessing bearTunes
When you start the webserver, you will notice the following block of text telling you
which port the webserver is running on:

+ RUNNING SERVER ON PORT: ##### +

To access your application, simply point your favorite browser to
http://MACHINE:PORT, where PORT is the one listed in the output to
RUN_SERVER and MACHINE is one of the following three, depending on which one
you’re logged into:

pentagon.cs.berkeley.edu
rhombus.cs.berkeley.edu
cube.cs.berkeley.edu

Note that if you’re developing this at home, you’ll probably end up replacing MACHINE
with localhost. You’ll have to figure out the PORT yourself: if you can get it
running at home, you will know this �.

Database schema
The following is the schema of the underlying database. In all relations, id is the
primary key. No foreign key constraints are specified by the database management
system (though the intended relationships are obvious by the naming convention).
Instead, the constraints are specified in the Model (look at the files in
beartunes/app/model to see how that’s done).

artists(id, name, bio)
albums (id, artist_id, name, year, genre_id, rating)
tracks (id, album_id, name, number, length)
genres (id, name)

CS 186 Haber/Roth
Spring 2007 UC Berkeley

- 4 -

Filling the database
First things first: put some data in your database! One way to do this is to start up the
application, open it in a web browser, and use the provided forms. If you use this
approach, it will probably make your life easier to first insert at least one genre, then an
artist, then an album, and then some tracks. You can also automatically fill the database
with some pre-compiled data. Just cd into the beartunes/ directory and call the
following command:

 ./LOAD_DATA

Alternatively, you can provide your own data in the form of a SQL file, with the
following command:

 ./LOAD_DATA SQLFILE

If you use this approach, you must make sure the following set of lines appears at the top
of the file:

DELETE FROM tracks;
DELETE FROM albums;
DELETE FROM artists;
DELETE FROM genres;

And the following lines appear at the end of the file:

ALTER SEQUENCE genres_id_seq RESTART WITH #MAX+1#;
ALTER SEQUENCE artists_id_seq RESTART WITH #MAX+1#;
ALTER SEQUENCE albums_id_seq RESTART WITH #MAX+1#;
ALTER SEQUENCE tracks_id_seq RESTART WITH #MAX+1#;

Where #MAX+1# is the number after the highest id value in the relevant table. If you
don’t do this, trying to insert new tuples through the web interface will not work!

If you’re a fan of iTunes, you can also import your iTunes library into the bearTunes
database. Open iTunes and select File > Export Library… to export your
iTunes library to an XML file. Then cd into the beartunes/script/hw5/
directory and call the following command:

java iTunesLibraryLoader XMLFILE SQLFILE

Where XMLFILE is the file that was generated by iTunes and SQLFILE is the output
file that will be created. (Note: this took 2 days to convert my library, and it’s a mere
16 GB, so be prepared to wait a while for it to complete!) When this is finished, cd to
the beartunes/ directory and call the following command:

 ./LOAD_DATA SQLFILE

CS 186 Haber/Roth
Spring 2007 UC Berkeley

- 5 -

Your assignment
After taking some time to play around with bearTunes, you’ll now get to add some
functionality to it. The following are the classes you’ll need to either create or extend,
which potentially includes changes to both the Controller and View. You’ll find all
of the code you need in the beartunes/app/ directory (use the existing files for
reference). You should only need to make changes to the files in the controllers/
and views/ directories. For example, to modify the artist/list action, you would have to
make changes to the files controllers/artist and views/artist/. You
should be using the Controller classes to fetch all of the specified data from the database
– the View classes are just responsible for displaying the data, not doing any computation
or manipulation! Unless otherwise specified, all orderings should be in ascending
order. Also, any pages we ask you to provide a link to already exist – unless otherwise
specified, you should not need to create any additional files. Be sure to pay close
attention to the order in which the data is displayed, and the pages to which the data
is linked!

1. track/list
For each Track in the database, list the relevant Artist name and Track name. They
should be ordered by (Track name, Artist name). When clicked on, the Artist name
should lead to the artist/show page for that particular Artist. Clicking on the Track
name should lead to album/show page for the relevant Album. Finally, somewhere
on the page, put a link to the page to track/new.

2. album/show
For the specified Album, display the relevant Artist name and Album name. Clicking
on the Artist name should lead to the artist/show page for that particular Artist. Also
list the Genre name, year it was released, and rating. Clicking on the Genre name
should lead to the genre/show page for that particular Genre. Finally, for all Tracks
on the specified Album, list the name, number, and length. They should be ordered
by number.

3. artist/show
For the specified Artist, display the relevant Artist name. For all Albums by that
artist, list the Album name, year, rating, and Genre. Clicking on the Album name
should lead to the album/show page for that particular Album, and clicking on the
Genre name should lead to the genre/show page for that particular Genre. These
albums should be ordered by (Album year, Album name). Along with the listed
information, for each Album give the total length. Finally, somewhere on the page,
display the average rating over all Albums by the given Artist.

CS 186 Haber/Roth
Spring 2007 UC Berkeley

- 6 -

4. genre/show
For all Albums in the specified Genre, list the relevant Artist name, Album name,
and year. Clicking on the Album name should lead to the album/show page for that
particular Album, and clicking on the Artist name should lead to the artist/show page
for that particular Artist. These albums should be ordered by (Artist name, Album
name, year).

5. album/best_albums << NEW ACTION >>
For all Albums with the highest rating in the database, list the relevant Artist name,
Album name, and year. Clicking on the Album name should lead to the album/show
page for that particular Album, and clicking on the Artist name should lead to the
artist/show page for that particular Artist. These Albums should be ordered by (Artist
name, Album name, year). Note: you will need to create a new View file for this
action, as one does not already exist.

6. artist/top_ten_artists << NEW ACTION >>
For the Artist with the top ten average Album ratings in the database, list the
relevant Artist name and average rating. Clicking on the Artist name should lead to
the artist/show page for that particular Artist. These Artists should be ordered by
(average Album rating, Artist name). There should only be ten Artists displayed; in
the case of a tie that causes you to have to choose, it’s pretty much arbitrary. Note:
you will need to create a new View file for this action, as one does not already
exist.

Submission
Submit the following files from within the beartunes/app/ directory:

controllers/album_controller.rb
controllers/artist_controller.rb
controllers/genre_controller.rb
controllers/track_controller.rb
views/album/best_albums.rhtml
views/album/show.rhtml
views/artist/show.rhtml
views/artist/top_ten_artists.rhtml
views/genre/show.html
views/track/list.rhtml

As usual, submit a README file that contains both partner’s names and logins, and a
description of any bugs you’re aware of but weren’t able to fix. Good luck!

