Reinforcement Learning

- [DEMOS]

- **Basic idea:**
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must learn to act so as to maximize expected rewards
 - Change the rewards, change the behavior

- **Examples:**
 - Playing a game, reward at the end for winning / losing
 - Vacuuming a house, reward for each piece of dirt picked up
 - Automated taxi, reward for each passenger delivered
Markov Decision Processes

- Markov decision processes (MDPs)
 - A set of states \(s \in S \)
 - A model \(T(s,a,s') = P(s' | s,a) \)
 - Probability that action \(a \) in state \(s \) leads to \(s' \)
 - A reward function \(R(s, a, s') \)
 (sometimes just \(R(s) \) for leaving a state or \(R(s') \) for entering one)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are the simplest case of reinforcement learning
 - In general reinforcement learning, we don’t know the model or the reward function

Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2’s
- Start with 3 showing
- After each card, you say “high” or “low”
- New card is flipped
- If you’re right, you win the points shown on the new card
- Ties are no-ops
- If you’re wrong, game ends
High-Low

- States: 2, 3, 4, done
- Actions: High, Low
- Model: \(T(s, a, s') \):
 - \(P(s'={}\text{done} \mid 4, \text{High}) = \frac{3}{4} \)
 - \(P(s'=2 \mid 4, \text{High}) = 0 \)
 - \(P(s'=3 \mid 4, \text{High}) = 0 \)
 - \(P(s'=4 \mid 4, \text{High}) = \frac{1}{4} \)
 - \(P(s'={}\text{done} \mid 4, \text{Low}) = 0 \)
 - \(P(s'=2 \mid 4, \text{Low}) = \frac{1}{2} \)
 - \(P(s'=3 \mid 4, \text{Low}) = \frac{1}{4} \)
 - \(P(s'=4 \mid 4, \text{Low}) = \frac{1}{4} \)
 - …
- Rewards: \(R(s, a, s') \):
 - Number shown on \(s' \) if \(s \neq s' \)
 - 0 otherwise
- Start: 3

Note: could choose actions with search. How?

MDP Solutions

- In deterministic single-agent search, want an optimal sequence of actions from start to a goal
- In an MDP, like expectimax, want an optimal policy \(\pi(s) \)
 - A policy gives an action for each state
 - Optimal policy maximizes expected utility (i.e. expected rewards) if followed
 - Defines a reflex agent

Optimal policy when \(R(s, a, s') = -0.04 \) for all non-terminals \(s \)
Example Optimal Policies

<table>
<thead>
<tr>
<th>Reward (R(s))</th>
<th>Policy 1</th>
<th>Policy 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stationarity

- In order to formalize optimality of a policy, need to understand utilities of reward sequences.
- Typically consider stationary preferences:

 \[[r, r_0, r_1, r_2, \ldots] > [r, r_0', r_1', r_2', \ldots] \]

 \[\Leftrightarrow [r_0, r_1, r_2, \ldots] > [r_0', r_1', r_2', \ldots] \]

- Theorem: only two ways to define stationary utilities:
 - Additive utility:
 \[V([s_0, s_1, s_2, \ldots]) = R(s_0) + R(s_1) + R(s_2) + \cdots \]
 - Discounted utility:
 \[V([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \]

Assuming that reward depends only on state for these slides!
Infinite Utilities?!

- Problem: infinite state sequences with infinite rewards

- Solutions:
 - Finite horizon:
 - Terminate after a fixed T steps
 - Gives nonstationary policy (π depends on time left)
 - Absorbing state(s): guarantee that for every policy, agent will eventually “die” (like “done” for High-Low)
 - Discounting: for $0 < \gamma < 1$
 \[
 V([s_0, \ldots, s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq R_{\text{max}}/(1 - \gamma)
 \]
 - Smaller γ means smaller horizon

How (Not) to Solve an MDP

- The inefficient way:
 - Enumerate policies
 - For each one, calculate the expected utility (discounted rewards) from the start state
 - E.g. by simulating a bunch of runs
 - Choose the best policy

- Might actually be reasonable for High-Low…

- We’ll return to a (better) idea like this later
Utility of a State

- Define the utility of a state under a policy:
 \(V^\pi(s) = \text{expected total (discounted) rewards starting in } s \text{ and following } \pi \)

- Recursive definition (one-step look-ahead):
 \[
 V^\pi(s) = E_{P(s'|\pi(s),s)}[R(s, \pi(s), s') + \gamma V^\pi(s')]
 \]
 \[
 V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')].
 \]

Policy Evaluation

- Idea one: turn recursive equations into updates
 \[
 V^\pi_0(s) = 0
 \]
 \[
 V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi_i(s')]
 \]

- Idea two: it’s just a linear system, solve with Matlab (or Mosek, or Cplex)
Example: High-Low

- Policy: always say “high”
- Iterative updates:

\[V_0 = \{2 : 0, \quad 3 : 0, \quad 4 : 0, \quad d : 0\} \]

\[V_1(2) = \frac{1}{2}(R(2, H, 2) + V_0(2)) + \frac{1}{4}(R(2, H, 3) + V_0(3)) + \frac{1}{4}(R(2, H, 4) + V_0(4)) \]

\[V_1(2) = \frac{1}{2}(0 + 0) + \frac{1}{4}(3 + 0) + \frac{1}{4}(4 + 0) + 0(0 + 0) \]

\[V_1(2) = \frac{7}{4} \]

\[V_1 = \{2 : \frac{7}{4}, \quad 3 : 1, \quad 4 : 0, \quad d : 0\} \]

Example: GridWorld

- [DEMO]
Q-Functions

- To simplify things, introduce a q-value, for a state and action under a policy
 - Utility of taking starting in state s, taking action a, then following \(\pi \) thereafter

\[
Q^\pi(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^\pi(s')] \\
V^\pi(s) = Q^\pi(s, \pi(s)), \\
Q^\pi(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma Q^\pi(s', \pi(s'))]
\]

Optimal Utilities

- Goal: calculate the optimal utility of each state
 - \(V^*(s) \) = expected (discounted) rewards with optimal actions

- Why: Given optimal utilities, MEU tells us the optimal policy
Practice: Computing Actions

- Which action should we choose from state s:
 - Given optimal q-values Q?

 $$ \arg \max_a Q^*(s, a) $$
 - Given optimal values V?

 $$ \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] $$

The Bellman Equations

- Definition of utility leads to a simple relationship amongst optimal utility values:

 Optimal rewards = maximize over first action and then follow optimal policy

- Formally:

 $$ V^*(s) = Q^*(s, \pi^*(s)) $$

 $$ V^*(s) = \max_a Q^*(s, a) $$

 $$ V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] $$
Example: GridWorld

Value Iteration

- Idea:
 - Start with bad guesses at all utility values (e.g. $V_0(s) = 0$)
 - Update all values simultaneously using the Bellman equation (called a value update or Bellman update):

$$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

- Repeat until convergence

- Theorem: will converge to unique optimal values
 - Basic idea: bad guesses get refined towards optimal values
 - Policy may converge long before values do
Example: Bellman Updates

\[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')] \]
\[= \sum_{s'} T((3,3), \text{right}, s') [R((3,3)) + 0.9 V_i(s')] \]
\[= 0 + 0.9 [0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0] \]

Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates

[DEMO]
Convergence*

- Define the max-norm: \(||U|| = \max_s |U(s)| \)

- Theorem: For any two approximations \(U \) and \(V \)
 \[
 ||U^{t+1} - V^{t+1}|| \leq \gamma ||U^t - V^t||
 \]
 - I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution

- Theorem:
 \[
 ||U^{t+1} - U^t|| < \epsilon, \Rightarrow ||U^{t+1} - U^t|| < 2\epsilon \gamma / (1 - \gamma)
 \]
 - I.e. one the change in our approximation is small, it must also be close to correct

Policy Iteration

- Alternate approach:
 - **Policy evaluation:** calculate utilities for a fixed policy until convergence (remember the beginning of lecture)
 - **Policy improvement:** update policy based on resulting converged utilities
 - Repeat until policy converges

- This is **policy iteration**
 - Can converge faster under some conditions
Policy Iteration

- If we have a fixed policy π, use simplified Bellman equation to calculate utilities:

$$ V_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') [R(s, \pi_k(s), s') + \gamma V_i(s')] $$

- For fixed utilities, easy to find the best action according to one-step look-ahead

$$ \pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V(s')] $$

Comparison

- In value iteration:
 - Every pass (or “backup”) updates both policy (based on current utilities) and utilities (based on current policy)

- In policy iteration:
 - Several passes to update utilities
 - Occasional passes to update policies

- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often
Next Class

- In real reinforcement learning:
 - Don’t know the reward function $R(s,a,s')$
 - Don’t know the model $T(s,a,s')$
 - So can’t do Bellman updates

- Need new techniques:
 - Q-learning
 - Model learning
 - Agents actually have to interact with the environment rather than simulate it