CS 188: Artificial Intelligence
Fall 2006

Lecture 10: MDPs II
9/28/2006

Dan Klein – UC Berkeley

Announcements

- Midterm prep page is up
- Project 2.1 will be up in a day or so
 - Due after midterm
 - But start it now, because MDPs are on the midterm!
- Project 1.4 (Learning Pacman) and the Pacman contest will be after the midterm
- Review session TBA, check the web page
Recap: MDPs

- **Markov decision processes:**
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$
 - Start state s_0

- **Examples:**
 - Gridworld, High-Low, Pacman, N-Armed Bandit
 - Any process where the result of your action is stochastic

- **Goal:** find the “best” policy π
 - Policies are maps from states to actions
 - What do we mean by “best”?
 - This is like search – it’s planning using a model, not actually interacting with the environment

Example: Autonomous Helicopter

![Image of autonomous helicopter]
Example: High-Low

High-Low

T = 0.5, R = 2
T = 0.25, R = 3
T = 0, R = 4
T = 0.25, R = 0

MDP Search Trees

- Can view an MDP as a branching search tree

(s, a) is a q-state

(s, s′) called a transition

T(s, a, s′) = P(s′|s,a)
R(s, a, s′)
Discounting

- Typically discount rewards by $\gamma < 1$ each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

Recap: MDP Quantities

- Return = Sum of future discounted rewards in one episode (stochastic)

- V: Expected return from a state under a policy
 \[V^\pi(s) = Q^\pi(s, \pi(s)) \]

- Q: Expected return from a q-state under a policy
 \[Q^\pi(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^\pi(s') \right] \]
Solving MDPs

- We want to find the optimal policy π.

- Option 1: modified expectimax search:

 $\pi(s) = \arg \max_a Q^*(s, a)$

 $Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$

 $V^*(s) = \max_a Q^*(s, a)$

MDP Search Trees

- Problems:
 - This tree is usually infinite (why?)
 - The same states appear over and over (why?)

- Solution:
 - Compute to a finite depth (like expectimax)
 - Consider returns from sequences of increasing length
 - Cache values so we don't repeat work
Value Estimates

- Calculate estimates $V_k^*(s)$
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As $k \to \infty$, it approaches the optimal value
- Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and this approach actually won’t work

Memoized Recursion

- Recurrences:
 $$ V_0^*(s) = 0 $$
 $$ V_i^*(s) = \max_a Q_i^*(s, a) $$
 $$ Q_i^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{i-1}^*(s')] $$
 $$ \pi_i(s) = \arg \max_a Q_i^*(s, a) $$
- Cache all function call results so you never repeat work
- What happened to the evaluation function?
Value Iteration

- Problems with the recursive computation:
 - Have to keep all the $V_k^*(s)$ around all the time
 - Don’t know which depth $\pi_k(s)$ to ask for when planning

- Solution: value iteration
 - Calculate values for all states, bottom-up
 - Keep increasing k until convergence

The Bellman Equations

- Definition of utility leads to a simple relationship amongst optimal utility values:

 Optimal rewards = maximize over first action and then follow optimal policy

- Formally:

 $V^*(s) = \max_a Q^*(s, a)$

 $Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$

 $V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$
Value Iteration

- Idea:
 - Start with $V_0(s) = 0$, which we know is right (why?)
 - Given V_i, calculate the values for all states for depth $i+1$:
 $$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$
 - This is called a value update or Bellman update
 - Repeat until convergence

- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

$$V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

$$V_{i+1}((3, 3)) = \sum_{s'} T((3, 3), \text{right}, s') \left[R((3, 3)) + 0.9 V_i(s') \right]$$

$$= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right]$$
Example: Value Iteration

Information propagates outward from terminal states and eventually all states have correct value estimates.

Convergence*

Define the max-norm: $||U|| = \max_s |U(s)|$

Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \leq \gamma ||U^t - V^t||$$

i.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution.

Theorem:

$$||U^{t+1} - U^t|| < \epsilon, \Rightarrow ||U^{t+1} - U|| < 2\epsilon \gamma / (1 - \gamma)$$

i.e. one the change in our approximation is small, it must also be close to correct.
Policy Iteration

- **Alternate approach:**
 - **Policy evaluation:** calculate utilities for a fixed policy until convergence (remember the beginning of lecture)
 - **Policy improvement:** update policy based on resulting converged utilities
 - Repeat until policy converges

- **This is policy iteration**
 - Can converge faster under some conditions

If we have a fixed policy \(\pi \), use simplified Bellman equation to calculate utilities:

\[
V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right].
\]

- For fixed utilities, easy to find the best action according to one-step look-ahead

\[
\pi_{k+1}(s) = \arg\max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]
\]
Comparison

- In value iteration:
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s) \)
 - Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $U(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way...
- … but it’s tricky!
Passive Learning

- **Simplified task**
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - **Goal:** learn the state values (and maybe the model)

- **In this case:**
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the general case soon

Example: Direct Estimation

- **Episodes:**
 - (1,1) up -1 (1,1) up -1
 - (1,2) up -1 (1,2) up -1
 - (1,2) up -1 (1,3) right -1
 - (1,3) right -1 (2,3) right -1
 - (2,3) right -1 (3,3) right -1
 - (3,3) right -1 (3,2) right -1
 - (3,2) up -1 (4,2) right -100
 - (3,3) right +100
 - (done)

\[U(1,1) \sim \frac{93 + (-105)}{2} = -6 \]
\[U(3,3) \sim \frac{100 + 98 + (-101)}{3} = 32.3 \]
Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each \(s,a\)
 - Normalize to give estimate of \(T(s,a,s')\)
 - Discover \(R(s,a,s')\) the first time we experience \((s,a,s')\)
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. "stationary noise")

Example: Model-Based Learning

- **Episodes:**
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,3)\) right +100
 - \((done)\)

\[
T(\langle 3,3\rangle, \text{right, } \langle 4,3\rangle) = 1 / 3
\]

\[
T(\langle 2,3\rangle, \text{right, } \langle 3,3\rangle) = 2 / 2
\]