Announcements

- Project 1.2 is up (Single-Agent Pacman)
 - Critical update: make sure you have the most recent version!

- Reminder: you are allowed to work with a partner!

- Change to John’s section: M 3-4pm now in 4 Evans
Motion as Search

- Motion planning as path-finding problem
 - Problem: configuration space is continuous
 - Problem: under-constrained motion
 - Problem: configuration space can be complex

Why are there two paths from 1 to 2?

Decomposition Methods

- Break c-space into discrete regions
- Solve as a discrete problem
Approximate Decomposition

- Break c-space into a grid
 - Search (A*, etc)
 - What can go wrong?
 - If no path found, can subdivide and repeat
- Problems?
 - Still scales poorly
 - Incomplete*
 - Wiggly paths

Hierarchical Decomposition

- Actually used in practical systems
- But:
 - Not optimal
 - Not complete
 - Still hopeless above a small number of dimensions
Skeletonization Methods

- Decomposition methods turn configuration space into a grid
- Skeletonization methods turn it into a set of points, with preset linear paths between them

Visibility Graphs

- Shortest paths:
 - No obstacles: straight line
 - Otherwise: will go from vertex to vertex
 - Fairly obvious, but somewhat awkward to prove
- Visibility methods:
 - All free vertex-to-vertex lines (visibility graph)
 - Search using, e.g. A*
 - Can be done in $O(n^3)$ easily, $O(n^2 \log(n))$ less easily
- Problems?
 - Bang, screech!
 - Not robust to control errors
 - Wrong kind of optimality?
Voronoi Decomposition

- Voronoi regions: points colored by closest obstacle

- Voronoi diagram: borders between regions
 - Can be calculated efficiently for points (and polygons) in 2D
 - In higher dimensions, some approximation methods

Voronoi Decomposition

- **Algorithm:**
 - Compute the Voronoi diagram of the configuration space
 - Compute shortest path (line) from start to closest point on Voronoi diagram
 - Compute shortest path (line) from goal to closest point on Voronoi diagram.
 - Compute shortest path from start to goal along Voronoi diagram

- **Problems:**
 - Hard over 2D, hard with complex obstacles
 - Can do weird things:
Probabilistic Roadmaps

- Idea: just pick random points as nodes in a visibility graph

- This gives *probabilistic roadmaps*
 - Very successful in practice
 - Lets you add points where you need them
 - If insufficient points, incomplete, or weird paths

Roadmap Example
Potential Field Methods

- So far: implicit preference for short paths
- Rational agent should balance distance with risk!
- Idea: introduce cost for being close to an obstacle
- Can do this with discrete methods (how?)
- Usually most natural with continuous methods

Potential Fields

- Cost for:
 - Being far from goal
 - Being near an obstacle
- Go downhill
- What could go wrong?
Adversarial Search

Game Playing State-of-the-Art

- **Checkers**: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

- **Chess**: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply.

- **Othello**: human champions refuse to compete against computers, which are too good.

- **Go**: human champions refuse to compete against computers, which are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

- **Pacman**: unknown
Game Playing

- Axes:
 - Deterministic or stochastic?
 - One, two or more players?
 - Perfect information (can you see the state)?

- Want algorithms for calculating a strategy (policy) which recommends a move in each state

Deterministic Single-Player?

- Deterministic, single player, perfect information:
 - Know the rules
 - Know what actions do
 - Know when you win
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
 - … it’s just search!

- Slight reinterpretation:
 - Each node stores the best outcome it can reach
 - This is the maximal outcome of its children
 - Note that we don’t store path sums as before
 - After search, can pick move that leads to best node
Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- **Minimax search**
 - A state-space search tree
 - Players alternate
 - Each layer, or ply, consists of a round of moves
 - Choose move to position with highest minimax value = best achievable utility against best play
- **Zero-sum games**
 - One player maximizes result
 - The other minimizes result

Tic-tac-toe Game Tree
Minimax Example

Minimax Search

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do v ← MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← ∞
for a, s in SUCCESSORS(state) do v ← MIN(v, MAX-VALUE(s))
return v
Minimax Properties

- Optimal against a perfect player. Otherwise?

- Time complexity?
 - $O(b^m)$

- Space complexity?
 - $O(bm)$

- For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

- Cannot search to leaves

- Limited search
 - Instead, search a limited depth of the tree
 - Replace terminal utilities with an eval function for non-terminal positions

- Guarantee of optimal play is gone

- More plies makes a BIG difference
 - [DEMO 3: limitedDepth]

- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha-\beta$ reaches about depth 8 – decent chess program
Evaluation Functions

- Function which scores non-terminals

Ideal function: returns the utility of the position

In practice: typically weighted linear sum of features:

\[Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- e.g. \(f_i(s) = \text{(num white queens – num black queens)}, \text{etc.} \)

Evaluation for Pacman

\[Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

This works for single-agent search as well!

Why do we want to do this for multiplayer games?

α-β Pruning Example
α-β Pruning

- **General configuration**
 - \(\alpha \) is the best value the Player can get at any choice point along the current path.
 - If \(n \) is worse than \(\alpha \), MAX will avoid it, so prune \(n \)'s branch.
 - Define \(\beta \) similarly for MIN.

α-β Pruning Pseudocode

```plaintext
function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ← −∞
for a, s in Successors(state) do v ← Max(v, Min-Value(s))
return v

function Max-Value(state, α, β) returns a utility value
inputs: state, current state in game
      α, the value of the best alternative for MAX along the path to state
      β, the value of the best alternative for MIN along the path to state
if Terminal-Test(state) then return Utility(state)
v ← −∞
for a, s in Successors(state) do
    v ← Max(v, Min-Value(s, α, β))
    if v ≥ β then return v
    α ← Max(α, v)
return v
```
α-β Pruning Properties

- Pruning has no effect on final result
- Good move ordering improves effectiveness of pruning
- With “perfect ordering”:
 - Time complexity drops to $O(b^{\log_2})$
 - Doubles solvable depth
 - Full search of, e.g. chess, is still hopeless!
- A simple example of metareasoning, here reasoning about which computations are relevant

Non-Zero-Sum Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children

```
1,2,6  4,3,2  6,1,2  7,4,1  5,1,1  1,5,2  7,7,1  5,4,5
```
Stochastic Single-Player

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, shuffle is unknown
 - In minesweeper, don’t know where the mines are

- Can do expectimax search
 - Chance nodes, like actions except the environment controls the action chosen
 - Calculate utility for each node
 - Max nodes as in search
 - Chance nodes take average (expectation) of value of children

- Later, we’ll learn how to formalize this as a Markov Decision Process

Stochastic Two-Player

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

if state is a Max node then
 return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
 return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
 return average of ExpectiMinimax-Value of Successors(state)
Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon \approx 20 legal moves
 - Depth 4 $= 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible…
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play

What’s Next?

- Make sure you know what:
 - Probabilities are.
 - Expectations are.

- Next:
 - How to learn evaluation functions
 - Markov Decision Processes