Probabilistic Models

- A probabilistic model is a joint distribution over a set of variables
 \[P(X_1, X_2, \ldots, X_n) \]
- Given a joint distribution, we can reason about unobserved variables given observations (evidence)
- General form of a query:
 \[P(x_d | x_e_1, \ldots, x_e_l) \]
 Stuff you care about
 Stuff you already know
- This kind of posterior distribution is also called the belief function of an agent which uses this model

Independence

- Two variables are independent if:
 \[P(X, Y) = P(X)P(Y) \]
 - This says that their joint distribution factors into a product two simpler distributions
- Independence is a modeling assumption
 - Empirical joint distributions: at best “close” to independent
 - What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
- How many parameters in the joint model?
- How many parameters in the independent model?
- Independence is like something from CSPs: what?

Example: Independence

- N fair, independent coin flips:
 \[
 \begin{array}{ccc}
 P(X_1) & P(X_2) & \ldots & P(X_n) \\
 \hline \\
 H & 0.5 & H & 0.5 & \ldots & H & 0.5 \\
 T & 0.5 & T & 0.5 & \ldots & T & 0.5 \\
 \end{array}
 \]

- \(2^n\)

Example: Independence?

- Most joint distributions are not independent
- Most are poorly modeled as independent

<table>
<thead>
<tr>
<th>(P(T))</th>
<th>(P(S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(S)</td>
</tr>
<tr>
<td>warm</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(P(T, S))</th>
<th>(P(T)P(S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(S)</td>
</tr>
<tr>
<td>warm</td>
<td>sun</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
</tr>
</tbody>
</table>

Conditional Independence

- \(P(\text{Toothache, Cavity, Catch})\)

 - If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 \[P(\text{catch} | \text{toothache, cavity}) = P(\text{catch} | \text{cavity}) \]
 - The same independence holds if I don't have a cavity:
 \[P(\text{catch} | \text{toothache, ¬cavity}) = P(\text{catch} | ¬cavity) \]
 - Catch is conditionally independent of Toothache given Cavity:
 \[P(\text{Catch} | \text{Toothache, Cavity}) = P(\text{Catch} | \text{Cavity}) \]
 - Equivalent statements:
 \[P(\text{Toothache} | \text{Catch}, \text{Cavity}) = P(\text{Toothache} | \text{Cavity}) \]
 \[P(\text{Toothache, Catch} | \text{Cavity}) = P(\text{Toothache} | \text{Cavity}) P(\text{Catch} | \text{Cavity}) \]
Conditional Independence
- Unconditional (absolute) independence is very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:
 \[P(X, Y | Z) = P(X | Z) P(Y | Z) \]
- What about this domain:
 - Traffic
 - Umbrella
 - Raining
 - What about fire, smoke, alarm?

The Chain Rule II
- Can always factor any joint distribution as an incremental product of conditional distributions
 \[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^n P(X_i | X_{i-1}) \]
- Why?
- This actually claims nothing...
- What are the sizes of the tables we supply?

The Chain Rule III
- Trivial decomposition:
 \[P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain}) P(\text{Traffic} | \text{Rain}) P(\text{Umbrella} | \text{Rain}, \text{Traffic}) \]
- With conditional independence:
 \[P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain}) P(\text{Traffic} | \text{Rain}) P(\text{Umbrella} | \text{Rain}), \]
- Conditional independence is our most basic and robust form of knowledge about uncertain environments
- Graphical models help us manage independence

Graphical Models
- Models are descriptions of how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Bayes’ Nets: Big Picture
- Two problems with using full joint distributions for probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to estimate anything empirically about more than a few variables at a time
- Bayes’ nets (more properly called graphical models) are a technique for describing complex joint distributions (models) using a bunch of simple, local distributions
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be very vague about how these interactions are specified

Graphical Model Notation
- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate “direct influence” between variables
- For now: imagine that arrows mean causation
Example: Coin Flips

- N independent coin flips

\[X_1, X_2, \ldots, X_n \]

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

- Model 1: independence
- Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A distribution over X, for each combination of parents' values
 \[
P(X|a_1 \ldots a_n)
\]
- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[
P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)).
\]
- Example:
 \[
P(\text{cavity, catch, } \neg\text{toothache}).
\]

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every full joint
- The topology enforces certain conditional independencies
Example: Coin Flips

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

$P(X_1) = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$

$P(X_2) = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$

$P(X_3) = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$

$P(h, h, t, h) = \ldots$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

<table>
<thead>
<tr>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
</tr>
<tr>
<td>¬r</td>
</tr>
</tbody>
</table>

$P(T | R)$

<table>
<thead>
<tr>
<th>¬r</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬t</td>
</tr>
<tr>
<td>¬t</td>
</tr>
</tbody>
</table>

Example: Alarm Network

$P(B | E) = \begin{bmatrix} 0.01 & 0.99 \\ 0.04 & 0.96 \end{bmatrix}$

$P(E) = \begin{bmatrix} 0.02 & 0.98 \end{bmatrix}$

$P(E | A) = \begin{bmatrix} 0.90 & 0.10 \\ 0.05 & 0.95 \end{bmatrix}$

$P(A | M) = \begin{bmatrix} 0.70 & 0.30 \\ 0.01 & 0.99 \end{bmatrix}$

$P(b, e, ¬a, j, m) = \ldots$

Example: Naïve Bayes

Imagine we have one cause y and several effects x:

$P(y, x_1, x_2, \ldots, x_n) = P(y)P(x_1 | y)P(x_2 | y) \ldots P(x_n | y)$

This is a naïve Bayes model.

We'll use these for classification later.

Example: Traffic II

- **Variables**
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?

- How big is an N-node net if nodes have k parents?

- Both give you the power to calculate $P(X_1, X_2, \ldots, X_n)$.

- BNs: Huge space savings!

- Also easier to elicit local CPTs

- Also turns out to be faster to answer queries (next class)
Building the (Entire) Joint

- We can take a Bayes’ net and build the full joint distribution it encodes
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]
- Typically, there’s no reason to build ALL of it
- But it’s important to know you could!
- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain

Example: Traffic

- Basic traffic net
- Let’s multiply out the joint

\[
\begin{array}{c|c|c}
R & P(R) & P(T | R) \\
\hline
- & 1/2 & \frac{6}{16} \\
+ & 1/2 & \frac{1}{16} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
T & P(T) & P(R | T) \\
\hline
- & 1/2 & \frac{6}{16} \\
+ & 1/2 & \frac{3}{16} \\
\end{array}
\]

Example: Reverse Traffic

- Reverse causality?

\[
\begin{array}{c|c|c}
R & P(R) & P(T | R) \\
\hline
- & 1/2 & \frac{3}{16} \\
+ & 1/2 & \frac{6}{16} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
T & P(T) & P(R | T) \\
\hline
- & 1/2 & \frac{1}{16} \\
+ & 1/2 & \frac{6}{16} \\
\end{array}
\]

Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independencies

Creating Bayes’ Nets

- So far, we talked about how any fixed Bayes’ net encodes a joint distribution
- Next: how to represent a fixed distribution as a Bayes’ net
 - Key ingredient: conditional independence
 - The exercise we did in “causal” assembly of BNs was a kind of intuitive use of conditional independence
 - Now we have to formalize the process
- After that: how to answer queries (inference)