Lecture 16: Bayes Nets II
10/24/2006

Dan Klein – UC Berkeley

Bayes’ Net Semantics

- A Bayes’ net:
 - A set of nodes, one per variable X
 - A directed, acyclic graph
 - A conditional distribution of each variable conditioned on its parents (the parameters θ)

- Semantics:
 - A BN defines a joint probability distribution over its variables:

 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

Building the (Entire) Joint

- We can take a Bayes’ net and build any entry from the full joint distribution it encodes

 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- Typically, there’s no reason to build ALL of it
- We build what we need on the fly

- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain, but is specified by local probabilities

Example: Alarm Network

Bayes’ Nets

- So far: how a Bayes’ net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)
Conditional Independence

- Reminder: independence
 - X and Y are independent if
 \[\forall x, y \ P(x, y) = P(x)P(y) \quad \rightarrow \quad X \perp Y \]
 - X and Y are conditionally independent given Z
 \[\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \quad \rightarrow \quad X \perp Y|Z \]
- (Conditional) independence is a property of a distribution

Example: Independence

- For this graph, you can fiddle with \(\theta \) (the CPTs) all you want, but you won’t be able to represent any distribution in which the flips are dependent!

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can calculate using algebra (really tedious)
 - If no, can prove with a counter example
- Example:

Causal Chains

- This configuration is a "causal chain"
 \[P(x, y, z) = P(x)P(y|x)P(z|y) \]
- Is X independent of Z given Y?
 \[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y) \quad \text{Yes!} \]
- Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - No, remember the "project due" example
 - Are X and Z independent given Y?
 \[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(y|x)P(y)} = P(z|y) \quad \text{Yes!} \]
- Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: remember the ballgame and the rain causing traffic, no correlation?
 - Still need to prove they must be (homework)
 - Are X and Z independent given Y?
 - No: remember that seeing traffic put the rain and the ballgame in competition?
 - This is backwards from the other cases
 - Observing the effect enables influence between effects.

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: graph search!

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless shaded

Reachability (the Bayes’ Ball)

- Correct algorithm:
 - Shade in evidence
 - Start at source node
 - Try to reach target by search
 - States: pair of (node X, previous state S)
 - Successor function:
 - X unobserved:
 - To any child
 - To any parent if coming from a child
 - X observed:
 - From parent to parent
 - If you can’t reach a node, it’s conditionally independent of the start node given evidence

Example

\[A \perp W \quad A \perp W | R \]

Example

\[
\begin{align*}
L & \perp T' | T & \text{Yes} \\
L & \perp B & \text{Yes} \\
L & \perp B | T & \text{Yes} \\
L & \perp B' | T' & \text{Yes} \\
L & \perp B | T', R & \text{Yes}
\end{align*}
\]
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**
 - $T \perp R$
 - $T \perp D | R$
 - $T \perp D | R, S$

Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independencies

Example: Traffic

- Basic traffic net
- Let’s multiply out the joint

Example: Reverse Traffic

- Reverse causality?

Example: Coins

- Extra arcs don’t prevent representing independence, just allow non-independence

Alternate BNs
Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- The Bayes’ ball algorithm (aka d-separation)
- A Bayes net may have other independencies that are not detectable until you inspect its specific distribution