Announcements

- Project 1.3 is up (Multi-Agent Pacman)
 - Due: 9/29

- Midterm: 10/10, in class
 - One page cheat sheet allowed
 - You must generate it yourself (no lecture slides, etc)
 - Basic calculators will be allowed, but not needed

- Pacman contest after midterm
Recap: Minimax

In minimax search:
- Max plans assuming that Min will act according to a minimax calculation
- Min’s calculation depends on Min’s belief that Max is a minimax player, and so on
- Max and Min’s thought processes interweave and we can sort the whole process out in one tree
- What if instead we think the opponent is random?
 - Or, smart but not minimax?

Non-Optimal Opponents

- In minimax search:
 - Max plans assuming that Min will act according to a minimax calculation
 - Min’s calculation depends on Min’s belief that Max is a minimax player, and so on
 - Max and Min’s thought processes interweave and we can sort the whole process out in one tree
- What if instead we think the opponent is random?
 - Or, smart but not minimax?
Expectimax Search

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, shuffle is unknown
 - In minesweeper, don’t know where the mines are
 - In pacman, the ghosts act randomly

- Can do expectimax search
 - Chance nodes, like min’s actions except the outcome is not known
 - Calculate expected utility for nodes
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children

- Later, we’ll learn how to formalize this as a Markov Decision Process

Expectimax Pseudocode

```python
def value(s):
    if s is a max node return maxValue(s)
    if s is an exp node return expValue(s)
    if s is a terminal node return evaluation(s)

def maxValue(s):
    values = [value(s') for s' in successors(s)]
    return max(values)

def expValue(s):
    values = [value(s') for s' in successors(s)]
    weights = [probability(s, s') for s' in successors(s)]
    return expectation(values, weights)
```
Maximum Expected Utility

- MEU: An agent should choose the action which maximizes its expected utility, given its knowledge

- General principle for decision making
- Often taken as the definition of rationality
- We’ll see this idea over and over in this course!

- Let’s decompress this definition…

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of numbers to outcomes

- Example: traffic on freeway?
 - Random variable: let T be whether there’s traffic
 - Outcomes: \{none, light, heavy\}
 - Distribution: $P(T=\text{none}) = 0.25$, $P(T=\text{light}) = 0.55$, $P(T=\text{heavy}) = 0.20$

- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one

- As we get more evidence, probabilities may change:
 - $P(T=\text{heavy}) = 1/5$, $P(T=\text{heavy} \mid \text{Hour=8am}) = 3/5$
 - We’ll talk about methods for reasoning and updating probabilities soon
What Are Probabilities?

- **Objectivist / frequentist answer:**
 - Averages over repeated experiments
 - E.g. empirically estimating P(rain) from historical observation
 - Assertion about how future experiments will go (in the limit)
 - New evidence changes the reference class
 - Makes one think of inherently random events, like rolling dice

- **Subjectivist / Bayesian answer:**
 - Degrees of belief about unobserved variables
 - E.g. an agent's belief that it's raining, given the temperature
 - E.g. pacman’s belief that the ghost will turn left, given the state
 - Often estimate probabilities from past experience (more later)
 - New evidence updates beliefs (more later)

Probabilities Everywhere

- **Not just for games of chance!**
 - I’m snuffling: am I sick?
 - Email contains “FREE!”: is it spam?
 - Tooth hurts: have cavity?
 - Safe to cross street?
 - 60 min enough to get to the airport?
 - Robot rotated wheel three times, how far did it advance?

- **Why can a random variable have uncertainty?**
 - Inherently random process (dice, etc)
 - Insufficient or weak evidence
 - Unmodeled variables
 - Ignorance of underlying processes
 - The world’s just noisy!

- **Compare to fuzzy logic,** which has degrees of truth, or rather than just degrees of belief
Reminder: Expectations

- Often a quantity of interest depends on a random variable
- The expected value of a function is the average output, weighted by some distribution over inputs
- Example: How late will I be?
 - Lateness is a function of traffic:
 \[L(T=\text{none}) = -10, \ L(T=\text{light}) = -5, \ L(T=\text{heavy}) = 15 \]
 - What is my expected lateness?
 - Need to specify some belief over T to weight the outcomes
 - Say \(P(T) = \{\text{none: 2/5, light: 2/5, heavy: 1/5}\} \)
 - The expected lateness:
 \[
 E_{P(T)}[L(T)] = \frac{2}{5} \times (-10) + \frac{2}{5} \times (-5) + \frac{1}{5} \times (15)
 \]

Expectations

- Real valued functions of random variables:
 \[f : X \rightarrow R \]
- Expectation of a function a random variable
 \[
 E_{P(X)}[f(X)] = \sum_{x} f(x) P(x)
 \]
- Example: Expected value of a fair die roll

<table>
<thead>
<tr>
<th>(X)</th>
<th>P</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
<td>6</td>
</tr>
</tbody>
</table>

\[
1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5
\]
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences.

- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent’s goals
 - Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)

- In general, we hard-wire utilities and let actions emerge (why don’t we let agents decide their own utilities?)

- More on utilities in a few lectures…

Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will act.
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model can predict that smart actions are likely!

- For now, assume we are given $P(A|S)$, a function which, for any state s maps states actions to probabilities: $P(A=a|S=s)$

Having a probabilistic belief about an agent’s action does not mean that agent is flipping any coins!
Expectimax for Pacman

- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score
- Instead, they are now a part of the environment
- We assume they act according to our belief distribution
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
- If you take this further, you end up calculating belief distributions over your opponents’ belief distributions over your belief distributions, etc…
 - Can get unmanageable very quickly!

α-β Pruning Example
\(\alpha-\beta\) Pruning

- **General configuration**
 - \(\alpha\) is the best value the Player can get at any choice point along the current path
 - If \(n\) is worse than \(\alpha\), MAX will avoid it, so prune \(n\)'s branch
 - Define \(\beta\) similarly for MIN

Expectimax Pruning?
Expectimax Evaluation

- For minimax search, evaluation function insensitive to monotonic transformations
 - We just want better states to have higher evaluations (get the ordering right)

- For expectimax, we need the scales to be meaningful as well
 - We need to know whether 50/50 chances of A or B is better than C
 - 100 or -10 vs 0 is different then 10 or -100 vs 0

What Makes a Good Player?

- Two main ways to make a player good
 - Deep search (pruning, move ordering, etc)
 - Good evaluation functions

- How to make good evaluation functions?
 - Inventing features brings domain knowledge about what aspects of the game state are important (i.e. food good, ghost bad, pellets better when ghosts are near)
 - But, balancing the weights on these features is quite hard to do with intuition
 - Better to let the agent play and tune based on experience
 - Good application for machine learning (next time)!
Mixed Layer Types

- E.g. backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```
if state is a MAX node then
    return the highest ExpectedMinimax-VALUE of Successors(state)

if state is a MIN node then
    return the lowest ExpectedMinimax-VALUE of Successors(state)

if state is a chance node then
    return average of ExpectedMinimax-VALUE of Successors(state)
```

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth $4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play
Non-Zero-Sum Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children
 - Can give rise to cooperation and competition dynamically…

```
1,2,6  4,3,2  6,1,2  7,4,1  5,1,1  1,5,2  7,7,1  5,4,5
```