CS 188: Artificial Intelligence
Fall 2006

Lecture 14: Probability
10/17/2006

Dan Klein – UC Berkeley

Announcements

- Grades:
 - Check midterm, p1.1, and p1.2 grades in glookup
 - Let us know if there are problems, so we can calculate useful preliminary grade estimates
 - If we missed you, tell us your partner’s login

- Readers request:
 - List partners and logins on top of your readme files
 - Turn off your debug output

- Project 3.1 up: written probability problems, start now!
- Extra office hours: Thursday 2-3pm (if people use them)

Today

- Probability
 - Random Variables
 - Joint and Conditional Distributions
 - Bayes Rule
 - Independence

- You’ll need all this stuff for the next few weeks, so make sure you go over it!

Uncertainty

- General situation:
 - Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Agent needs to reason about other aspects (e.g., where an object is or what disease is present)
 - Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we have uncertainty
 - R = is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?

- We denote random variables with capital letters

- Like in a CSP, each random variable has a domain
 - R in {true, false}
 - D in [0, ∞]
 - L in possible locations

Probabilities

- We generally calculate conditional probabilities
 - P(on time | no reported accidents) = 0.90

- Probabilities change with new evidence:
 - P(on time | no reported accidents, 5 a.m.) = 0.95
 - P(on time | no reported accidents, 5 a.m., raining) = 0.80
 - i.e., observing evidence causes beliefs to be updated
Probabilistic Models

- CSPs:
 - Variables with domains
 - Constraints: map from assignments to true/false
 - Ideally: only certain variables directly interact

- Probabilistic models:
 - (Random) variables with domains
 - Joint distributions: map from assignments (or outcomes) to positive numbers
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
 - Assignments are called outcomes

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Distributions on Random Vars

- A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n
is a map from assignments (or outcomes, or atomic events) to reals:
\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)
\]

\[
P(x_1, x_2, \ldots, x_n)
\]

- Size of distribution if n variables with domain sizes d?
- Must obey:
 \[
 0 < P(x_1, x_2, \ldots, x_n) < 1
 \]
 \[
 \sum_{(x_1, x_2, \ldots, x_n)} P(x_1, x_2, \ldots, x_n) = 1
 \]
- For all but the smallest distributions, impractical to write out

Examples

- An event is a set E of assignments (or outcomes)

\[
P(E) = \sum_{(x_1, x_2, \ldots, x_n) \in E} P(x_1, x_2, \ldots, x_n)
\]

- From a joint distribution, we can calculate the probability of any event

- Probability that it’s warm AND sunny?
- Probability that it’s warm?
- Probability that it’s warm OR sunny?

Conditional Probabilities

- A conditional probability is the probability of an event given another event (usually evidence)

\[
P(a | b) = \frac{P(a, b)}{P(b)}
\]

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Marginalization

- Marginalization (or summing out) is projecting a joint distribution to a sub-distribution over subset of variables

\[
P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)
\]

\[
P(T, S') = \sum_{t} P(t, s')
\]

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Conditional Probabilities

- Conditional or posterior probabilities:
 - E.g., $P(\text{cavity} | \text{toothache}) = 0.8$
 - Given that toothache is all I know...

- Notation for conditional distributions:
 - $P(\text{cavity} | \text{toothache}) = \text{a single number}$
 - $P(\text{cavity}, \text{toothache}) = \text{a 2x2 table summing to 1}$
 - $P(\text{cavity}, \text{toothache}) = \text{Two 2-element vectors, each summing to 1}$

- If we know more:
 - $P(\text{cavity} | \text{toothache, catch}) = 0.9$
 - $P(\text{cavity} | \text{toothache, cavity}) = 1$

- Note: the less specific belief remains valid after more evidence arrives, but is not always useful

- New evidence may be irrelevant, allowing simplification:
 - $P(\text{cavity} | \text{toothache, traffic}) = P(\text{cavity} | \text{toothache}) = 0.8$
 - This kind of inference, guided by domain knowledge, is crucial
Conditioning

- Conditional probabilities are the ratio of two probabilities:
 \[P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} \]
 \[P(x_1|x_2) = \frac{\sum_{x_1} P(x_1, x_2)}{P(x_2)} \]

\[P(w|r) = \frac{P(w, r)}{P(r)} \]

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Normalization Trick

- A trick to get the whole conditional distribution at once:
 - Get the joint probabilities for each value of the query variable
 - Renormalize the resulting vector

\[P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{\sum_{x_1} P(x_1, x_2)}{P(x_2)} \]

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The Product Rule

- Sometimes joint \(P(X,Y) \) is easy to get
- Sometimes easier to get conditional \(P(X|Y) \)

\[P(x|y) = \frac{P(x,y)}{P(y)} \]

\[P(x,y) = P(x|y)P(y) \]

Example: \(P(\text{sun}, \text{dry}) \)

\[
\begin{array}{c|c|c|c}
 & P & D & \bar{D} \\
 R & 0.5 & 0.2 & 0.3 \\
 B & 0.5 & 0.8 & 0.7 \\
\end{array}
\]

Lewis Carroll's Sack Problem

- Sack contains a red or blue token, 50/50
- We add a red token
- If we draw a red token, what’s the chance of drawing a second red token?
- Variables:
 - \(F=\{r,b\} \) the original token
 - \(D=\{r,b\} \) the first token we draw
- Query: \(P(F=r|D=r) \)

Lewis Carroll’s Sack Problem

- Now we have \(P(F,D) \)
- Want \(P(F=r|D=r) \)

<table>
<thead>
<tr>
<th>F</th>
<th>D</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>0.8</td>
</tr>
<tr>
<td>r</td>
<td>b</td>
<td>0.2</td>
</tr>
<tr>
<td>b</td>
<td>r</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Bayes’ Rule

- Two ways to factor a joint distribution over two variables:
 \[P(x,y) = P(x|y)P(y) = P(y|x)P(x) \]

- Dividing, we get:
 \[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]

- Why is this at all helpful?
 - Let us invert a conditional distribution
 - Often the one conditional is tricky but the other simple
 - Foundation of many systems we’ll see later (e.g., ASR, MT)

- In the running for most important AI equation!
More Bayes’ Rule

- **Diagnostic probability from causal probability:**
 \[
P(C | E) = \frac{P(E | C) P(C)}{P(E)}
 \]
- **Example:**
 - \(m \) is meningitis, \(s \) is stiff neck
 \[
P(m | s) = \frac{P(s | m) P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.00008
 \]
 - Note: posterior probability of meningitis still very small
 - Note: you should still get stiff necks checked out! Why?

Battleship

- **Let’s say we have two distributions:**
 - Prior distribution over ship locations: \(P(L) \)
 - Say this is uniform
 - Sensor reading model: \(P(R | L) \)
 - Given by some known black box
 - E.g. \(P(R = \text{yellow} | L = (1, 1)) = 0.1 \)
 - For now, assume the reading is always for the lower left corner
 - We can calculate the posterior distribution over ship locations using (conditionalized) Bayes’ rule:
 \[
P(l | r) \propto P(r | l) P(l)^*
 \]

Inference by Enumeration

- **P(sun)?**
 - \(S \)
 - \(T \)
 - \(R \)
 - \(P \)

S	T	R	P
sum	win	sun	0.30
sum	win	rain	0.05
sum	cold	sun	0.10
sum	cold	rain	0.05
win	win	sun	0.15
win	win	rain	0.05
win	cold	sun	0.15
win	cold	rain	0.20

- **P(sun | winter)?**
- **P(sun | winter, warm)?**

Independence

- **Two variables are independent if:**
 \[
P(X, Y) = P(X) P(Y)
 \]
 - This says that their joint distribution factors into a product two simpler distributions
 - **Independence is a modeling assumption**
 - Empirical joint distributions: at best “close” to independent
 - What could we assume for \{Weather, Traffic, Cavity\}?
 - How many parameters in the joint model?
 - How many parameters in the independent model?
 - Independence is like something from CSPs: what?
Example: Independence?

- Arbitrary joint distributions can be poorly modeled by independent factors

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Conditional Independence

- P(Toothache, Cavity, Catch) has $2^3 = 8$ entries (7 independent entries)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(catch | toothache, cavity) = P(catch | cavity)
- The same independence holds if I don’t have a cavity:
 - P(catch | toothache, ¬cavity) = P(catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(catch | Toothache, Cavity) = P(catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity)P(Catch | Cavity)

Conditional Independence

- Unconditional (absolute) independence is very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:
 \[P(X, Y | Z) = P(X | Z)P(Y | Z); \]
- What about this domain:
 - Traffic
 - Umbrella
 - Raining
- What about fire, smoke, alarm?

The Chain Rule II

- Can always factor any joint distribution as an incremental product of conditional distributions
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2 | X_1)P(X_3 | X_2, X_1) \ldots \]
 \[P(X_n | X_{n-1}, \ldots, X_1); \]
- Why?
- This actually claims nothing…
- What are the sizes of the tables we supply?

The Chain Rule III

- Trivial decomposition:
 \[P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = \]
 \[P(\text{Rain})P(\text{Traffic} | \text{Rain})P(\text{Umbrella} | \text{Rain}, \text{Traffic}) \]
- With conditional independence:
 \[P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = \]
 \[P(\text{Rain})P(\text{Traffic} | \text{Rain})P(\text{Umbrella} | \text{Rain}); \]
- Conditional independence is our most basic and robust form of knowledge about uncertain environments
- Graphical models (next class) will help us work with independence

Combining Evidence

- Imagine we have two sensor readings
- We want to calculate the distribution over ship locations given those observations:
 - List the probabilities we are given
- We first calculate the non-conditional (joint) probabilities we care about
- Then we renormalize