Announcements

- Midterm prep page is up
- Tell us NOW about midterm conflicts
- Project 2.1 up soon, due after midterm
- Project 1.4 (Learning Pacman) and the Pacman contest will be after the midterm
- Review session this Sunday, details on web

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$
 - Start state s_0

- Quantities:
 - Returns = sum of discounted rewards
 - Values = expected future returns from a state (optimal, or for a fixed policy)
 - Q-Values = expected future returns from a q-state (optimal, or for a fixed policy)

Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
 - Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $V(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way...
- … but it’s tricky!
Passive Learning

- **Simplified task**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You are given a policy $\pi(s)$
 - **Goal:** learn the state values (and maybe the model)

- **In this case:**
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the general case soon

Example: Direct Estimation

- **Episodes:**
 - (1,1) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,3) right -1
 - (4,3) ext +100

 $\gamma = 1, R = -1$

 $U(1,1) \approx (92 + -106) / 2 = -7$

 $U(3,3) \approx (99 + 97 + -102) / 3 = 31.3$

Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of $T(s,a,s')$
 - Discover $R(s,a,s')$ the first time we experience (s,a,s')
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. "stationary noise")

Example: Model-Based Learning

- **Episodes:**
 - (1,1) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,3) right -1
 - (4,3) ext +100

 $\gamma = 1$

 $T(<3,3>, \text{right}, <4,3>) = 1 / 3$

 $T(<2,3>, \text{right}, <3,3>) = 2 / 2$

Model-Based Learning

- **In general, want to learn the optimal policy, not evaluate a fixed policy**

- **Idea: adaptive dynamic programming**
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We’ll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy
What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them

- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility

- Systems must explore in the beginning and exploit in the limit

Model-Free Learning

- Big idea: why bother learning T?
 - Update each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

\[
V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \{ R(s, a, s') + \gamma V^\pi(s') \}
\]

\[
sample = R(s, a, s') + \gamma V^\pi(s')
\]

\[
V^\pi(s) \leftarrow V^\pi(s) + \alpha \{ sample - V^\pi(s) \}
\]

Example: Passive TD

\[
V^\pi(s) = V^\pi(s) + \alpha \left\{ R(s, a, s') + \gamma V^\pi(s') - V^\pi(s) \right\}
\]

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Reward</th>
<th>New State</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>up</td>
<td>-1</td>
<td>(1, 2)</td>
<td>1</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>up</td>
<td>-1</td>
<td>(1, 3)</td>
<td>1</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>right</td>
<td>-1</td>
<td>(2, 3)</td>
<td>1</td>
</tr>
<tr>
<td>(2, 3)</td>
<td>right</td>
<td>-1</td>
<td>(3, 2)</td>
<td>1</td>
</tr>
<tr>
<td>(3, 2)</td>
<td>up</td>
<td>-1</td>
<td>(4, 3)</td>
<td>1</td>
</tr>
<tr>
<td>(3, 3)</td>
<td>right</td>
<td>-1</td>
<td>(3, 3)</td>
<td>1</td>
</tr>
<tr>
<td>(3, 3)</td>
<td>right</td>
<td>-1</td>
<td>(4, 3)</td>
<td>1</td>
</tr>
<tr>
<td>(4, 3)</td>
<td>exit</td>
<td>-100</td>
<td>(done)</td>
<td>1</td>
</tr>
</tbody>
</table>

Q-Learning

- Learn Q*(s, a) values
 - Receive a sample (s, a, s’, r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \{ R(s, a, s') + \gamma V^*(s') \}
\]

\[
sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')
\]

- Nudge the old estimate towards the new sample:

\[
Q(s, a) \leftarrow Q(s, a) + \alpha \{ sample - Q(s, a) \}
\]

Problems with TD Value Learning

- TD value learning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \{ R(s, a, s') + \gamma V^*(s') \}
\]

- Idea: learn Q-values directly
- Makes action selection model-free too!

Q-Learning Example

- [DEMO]
Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
- Neat property: does not learn policies which are optimal in the presence of action selection noise

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \) (exact form not important)
 \[
 Q_{t+1}(s, a) \leftarrow \max_a Q_t(s', a') + \gamma \max \sum_{a'} Q_t(s', a') + \gamma \max \sum_{a'} f(Q_t(s', a'), N(s', a'))
 \]