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1 Course Philosophy/Outline
Over the last decade the there have been foundational progress at the interface of quantum physics and
computer science. The emerging areas of quantum computation, quantum cryptography and quantum infor-
mation theory all rely on the counter-intuitive information processing properties of quantum systems. There
has been a growing feeling among researchers in these fields that the quantum computation and information
perspective provides a new and more conceptual way of introducing students to quantum mechanics. The
first part of this course will provide a brief introduction tosome of the more conceptual aspects of quantum
phusics from this new point of view. There are four main properties of quantum systems that are useful in
quantum computation, cryptography and information:

• Interference • Superposition • Entanglement • Measurement

In particular, the detailed study of entanglement is the most important point of departure from more tradi-
tional approaches to the subject. For example, quantum computation derives its power from the fact that the
description of the state of an n-particle quantum system grows exponentially in n. This enormous informa-
tion capacity is not easy to access, since any measurement ofthe system only yields n pieces of classical
information. Thus the main challenge in the field of quantum algorithms is to manipulate the exponential
amount of information in the quantum state of the system, andthen extract some crucial pieces via a final
measurement.

Quantum cryptography relies on a fundamental property of quantum measurements: that they inevitably
disturb the state of the measured system. Thus if Alice and Bob wish to communicate secretly, they can
detect the presence of an eavesdropper Eve by using cleverlychosen quantum states and testing them to
check whether they were disturbed during transmission.

...

1.1 Young’s double-slit experiment
Let ψ1(x) ∈

�
be the amplitude if only slit 1 is open. Then the probability density of measuring a photon at

x is P1(x) = |ψ1(x)|2. Let ψ2(x) be the amplitude if only slit 2 is open.P2(x) = |ψ2(x)|2.

ψ12(x) = 1√
2
ψ1(x)+ 1√

2
ψ2(x) is the amplitude if both slits are open.P12(x) = |ψ1(x)+ ψ2(x)|2. The two

complex numbersψ1(x) andψ2(x) can cancel each other out – destructive interference.

But how can a single particle that went through the first slit know that the other slit is open? In quantum
mechanics, this question is not well-posed. Particles do not have trajectories, but rather take all paths
simultaneously. This is a key to the power of quantum computation.

1.2 Qubits – Naive introduction
The basic entity of quantum information is a qubit (pronounced “cue-bit”), or a quantum bit. Consider the
electron in a hydrogen atom. It can be in its ground state (i.e. ans orbital) or in an excited state. If this were

C/CS/Phys 191, Fall 2003, Lecture 1 1



a classical system, we could store a bit of information in thestate of the electron: ground = 0, excited = 1.

+
0

1

In general, since the electron is a quantum system, it is in a linear superposition of the ground and excited
state — it is in the ground state (0) with probability amplitude α ∈ �

and in the excited state (1) with
probability amplitudeβ ∈ �

. It is as though the electron “does not make up its mind” as to which of the 2
classical states it is in. Such a 2-state quantum system is called a qubit, and its state can be written as a unit
(column) vector

(α
β
)

∈ � 2. In Dirac notation, this may be written as:

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

α ,β ∈� and |α |2 + |β |2 = 1

The Dirac notation has the advantage that the it labels the basis vectors explicitly. This is very convenient
because the notation expresses both that the state of the qubit is a vector, and that it is data (0 or 1) to be
processed. (The{

∣

∣0
〉

,
∣

∣1
〉

} basis is called the standard or computational basis.)

This linear superposition
∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

is part of the private world of the electron. For us to know
the electron’s state, we must make a measurement. Measuring

∣

∣ψ
〉

in the{
∣

∣0
〉

,
∣

∣1
〉

} basis yields
∣

∣0
〉

with
probability |α |2, and

∣

∣1
〉

with probability |β |2.

One important aspect of the measurement process is that it alters the state of the qubit: the effect of the
measurement is that the new state is exactly the outcome of the measurement. I.e., if the outcome of the
measurement of

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

yields
∣

∣0
〉

, then following the measurement, the qubit is in state
∣

∣0
〉

.
This implies that you cannot collect any additional information aboutα , β by repeating the measurement.

More generally, we may choose any orthogonal basisv,v⊥ and measure the qubit in it. To do this, we
rewrite our state in that basis:

∣

∣ψ
〉

= α ′∣
∣v

〉

+ β ′∣
∣v⊥

〉

. The outcome isv with probability |α ′|2, and
∣

∣v⊥
〉

with probability |β ′|2. If the outcome of the measurement on
∣

∣ψ
〉

yields
∣

∣v
〉

, then as before, the the qubit is
then in state

∣

∣v
〉

.

1.2.1 Measurement example I.

Q: We measure
∣

∣ψ
〉

= α
∣

∣0
〉

+β
∣

∣1
〉

in the
∣

∣v
〉

,
∣

∣v⊥
〉

basis, where
∣

∣v
〉

= a
∣

∣0
〉

+b
∣

∣1
〉

. What is the probability
of measuring

∣

∣v
〉

?

A: First let’s do the simpler casea = b = 1√
2
, so

∣

∣v
〉

= 1√
2
(
∣

∣0
〉

+
∣

∣1
〉

)≡
∣

∣+
〉

,
∣

∣v⊥
〉

= 1√
2
(
∣

∣0
〉

−
∣

∣1
〉

)≡
∣

∣−
〉

.

See Figure 1. We express
∣

∣ψ
〉

in the
∣

∣+
〉

,
∣

∣−
〉

basis:

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

= α 1√
2
(
∣

∣+
〉

+
∣

∣−
〉

)+ β 1√
2
(
∣

∣+
〉

−
∣

∣−
〉

)

= 1√
2

(

(α + β )
∣

∣+
〉

+(α −β )
∣

∣−
〉)

.

Therefore the probability of measuring
∣

∣+
〉

is | 1√
2
(α + β )|2 = |α + β |2/2. The probability of measuring

∣

∣−
〉

is |α + β |2/2. We will do the general case in §1.3.1.
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∣

∣0
〉

∣

∣1
〉

∣

∣ +
〉

= 1√
2
(
∣

∣0
〉

+
∣

∣1
〉

)

∣

∣ −
〉

= 1√
2
(
∣

∣0
〉

−
∣

∣1
〉

)

45◦

θ

∣

∣ψ
〉

= cos θ
∣

∣0
〉

+ sin θ
∣

∣1
〉

〈+
|ψ〉

〈−|ψ〉

Figure 1:

1.3 Examples of Qubits

Photon Polarization:

There is a qubit associated with photon - its polarization. Recall that a photon moving along the z-axis has
an associated electric field in the x-y plane. The frequency of the field is determined by the frequency of the
photon. However, this still leaves the x-y components of theelectric field unspecified. The 2-dimensional
quantity specifying this field is the polarization of the photon. The polarization of a photon can be measured
by using a polaroid or a calcite crystal. A polaroid sheet (suitably oriented) transmits x-polarized photons
and absorbs y-polarized photons. Thus a photon that is in a superposition

∣

∣φ
〉

= α
∣

∣x
〉

+β
∣

∣y
〉

is transmitted
with probability |α |2. If the photon now encounters another polariod sheet with the same orientation, then it
is transmitted with probability 1. On the other hand, if the second polaroid sheet has its axes crossed at right
angles to the first one, then if the photon is transmitted by the first polaroid, then it is definitely absorbed by
the second sheet. An interesting experiment may be performed by interposing a third polariod sheet at a 45
degree angle between the first two. Now a photon that is transmitted by the first sheet makes it through the
next two with probability 1/4.

Proof: Indeed, the polarization of light after the first filter is
∣

∣0
〉

. The probability this light passes the
second filter is|

〈

0
∣

∣

1√
2
(
∣

∣0
〉

+
∣

∣1
〉

)
〉

|2 = cos2 π
4 = 1/2. If light passes the second filter, its polarization is

1√
2
(
∣

∣0
〉

+
∣

∣1
〉

). Its probability of passing the third filter is then|
〈

1√
2
(
∣

∣0
〉

+
∣

∣1
〉

)
∣

∣1
〉

|2 = 1/2. 2

Spins:

Like photon polarization, the spin of a (spin-1/2) particleis exactly a two-state system. More next time!

1.3.1 Measurement example II.

The notation〈v| (“bra v”) denotes a row vector, the conjugate-transpose of|v〉, or |v〉†. For example,〈0| =
(1 0) and〈1| = (0 1). More generally,

〈ψ | =
(α

β
)†

= ( ᾱ β̄ ) = ᾱ〈0|+ β̄ 〈1| .
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The Dirac notation can be handy. For example, let
∣

∣v1
〉

= a1
∣

∣0
〉

+ b1
∣

∣1
〉

,
∣

∣v2
〉

= a2
∣

∣0
〉

+ b2
∣

∣1
〉

.

Then
〈

v1
∣

∣v2
〉

(shorthand for
〈

v1
∣

∣

∣

∣v2
〉

) is a matrix product of the 1× 2 matrix
〈

v1
∣

∣ and the 2× 1 matrix
∣

∣v2
〉

, or just a scalar:

〈

v1
∣

∣v2
〉

= ( ā1 b̄1 )
(a2

b2

)

= ā1a2 + b̄1b2 .

〈

v1
∣

∣v2
〉

=
〈

v2
∣

∣v1
〉

is an inner product. Note that
〈

0
∣

∣0
〉

=
〈

1
∣

∣1
〉

= 1 and
〈

0
∣

∣1
〉

=
〈

1
∣

∣0
〉

= 0. Thus the
above equation could have been expanded,

〈

v1
∣

∣v2
〉

= (ā1
〈

0
∣

∣ + b̄1
〈

1
∣

∣ )(a2
∣

∣0
〉

+ b2
∣

∣1
〉

)

= ā1a2
〈

0
∣

∣0
〉

+ ā1b2
〈

0
∣

∣1
〉

+ b̄1a2
〈

1
∣

∣0
〉

+ b̄1b2
〈

1
∣

∣1
〉

= ā1a2 ·1+ ā1b2 ·0+ b̄1a2 ·0+ b̄1b2 ·1
= ā1a2 + b̄1b2 .

In this notation,α =
〈

0
∣

∣ψ
〉

, β =
〈

1
∣

∣ψ
〉

. The normalization condition|α |2 + |β |2 = 1 is

1 = |α |2 + |β |2 = ᾱα + β̄β
=

〈

ψ
∣

∣0
〉〈

0
∣

∣ψ
〉

+
〈

ψ
∣

∣1
〉〈

1
∣

∣ψ
〉

=
〈

ψ
∣

∣(
∣

∣0
〉〈

0
∣

∣+
∣

∣1
〉〈

1
∣

∣)
∣

∣ψ
〉

=
〈

ψ
∣

∣ψ
〉

.

The last equality above follows since
∣

∣0
〉〈

0
∣

∣ =
(

1 0
0 0

)

,
∣

∣1
〉〈

1
∣

∣ =
(

0 0
0 1

)

, so
∣

∣0
〉〈

0
∣

∣+
∣

∣1
〉〈

1
∣

∣ is the 2×2 identity
matrix. (This trick is important enough to have its own name,the “resolution of the identity.”)

In the next lecture, we will introduce tensor product spaces, where the advantages of this notation increase.

With the new notation, it is simple to solve the general case of the question asked in §1.2.1. Recall|v〉 =
a|0〉+ b|1〉 and choose|v⊥〉 = b̄|0〉− ā|1〉. Indeed,〈v|v⊥〉 = ab−ba = 0.

|ψ〉 =
(

|v〉〈v|+ |v⊥〉〈v⊥|
)

|ψ〉

= α(|v〉〈v|0〉+ |v⊥〉〈v⊥|0〉)+ β (|v〉〈v|1〉+ |v⊥〉〈v⊥|1〉)
= (α〈v|0〉+ β 〈v|1〉)|v〉+(α〈v⊥|0〉+ β 〈v⊥|1〉)|v⊥〉
= (α ā + β b̄)|v〉+(αb+ βa)|v⊥〉 .

The probability of measuring|v〉 in a measurement in thev,v⊥ basis is therefore

|〈v|ψ〉|2 = |α ā+ β b̄|2 .
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