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1 Entanglement and Spin
So far we’ve talked about 1 qubit operations (e.g.

∣

∣ψ
〉

⇒
∣

∣ψ ′〉 = α ′∣
∣0

〉

+β ′∣
∣1

〉

). But what about entangle-
ment? What about when there are more than one qubits?

Question: How do we physically create an entangled state of 2 spins?

Answer: Must have an interaction between them, i.e.two particle Hamiltonian.

How do we create such an interaction and how does it lead to entanglement? Let’s start with two physical
qubits, say, electrons:

Claim: The ground state of this system is an entangled state! Namely,
∣

∣ψ
〉

= 1
2

(∣

∣0
〉

1
∣

∣1
〉

2−
∣

∣1
〉

1
∣

∣0
〉

2
)

, a
Bell state!

How do we show this? It’s the same old quantum story, solving the Schr. equation.

So what isĤ? We must figure out how these electrons interact with each other. What effect could one
electron have on the other electron, and vice versa?

Well, we know that an electron has a magnetic dipole moment that is related to its spin. Magnetic dipole
moments come up classically when you have current loops, so conceptually we can think of electrons as
little current loops that generate dipolar magnetic fields. But if one electron generates a magnetic field, then
the other electron can “feel” that electric field. If you put two electrons close enough together, then we
imagine that the two generated fields from electron #1 (#2) will be felt by electron #2 (#1).

What does this look like mathematically, i.e. what is the Hamiltonian? Well, we know~µ = − e
m
~S and

Ĥ = ~µ ·~B. But we know that the magnetic field produced by a magnetic moment is proportional to that
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vector, so we can say~B1 ∝ ~S1, or~B1 = A~S1 whereA > 0. So,

Ĥ = −
(

− e
m

~S2

)

·A~S1 (1)

or equivalently,

Ĥ = C~S2 ·~S1 (2)

whereC > 0. This is our electron interaction Hamiltonian. You might wonder what C is. C should be a
strong function of the relative position, but we don’t want to worry about that now. You can just imagine that
C is determined through experiment, but is equal to some value that is yet to be determined. The important
part is the~S1 ·~S2 term.

So what is the ground state of this Hamiltonian? Let’s use a little trick (whenever you hear “trick” in regards
to spins and angular momentum, it’s time to bust out the raising/lowering operators).

Consider~STotal = ~S1 +~S2, a new operator that should represent thetotal spin of the two electron system.
Let’s look at some features of this new operator:

~ST ·~ST = Ŝ2
T =

(

~S1 +~S2

)

·
(

~S1 +~S2

)

= Ŝ2
1 + Ŝ2

2 +2~S2 ·~S1 (3)

We see that the dot product~S2 ·~S1 has appeared. Let’s solve for this quantity:

~S2 ·~S1 =
1
2

(

Ŝ2
T − Ŝ2

1 + Ŝ2
2

)

(4)

and therefore our interaction Hamiltonian can be expressed as:

Ĥ =
C
2

(

Ŝ2
T − Ŝ2

1 + Ŝ2
2

)

(5)

So, the ground state will be whatever state minimizes the expectation value of this operator (recall< E >=
〈

ψ
∣

∣ Ĥ
∣

∣ψ
〉

).

Note that no matter what
∣

∣ψ
〉

is, Ŝ2
1

∣

∣ψ
〉

= h̄2 1
2

(

1
2 +1

)∣

∣ψ
〉

= 3
4h̄2

∣

∣ψ
〉

. The same goes for̂S2
2, so we can

replace botĥS2
1 andŜ2

2 with 3
4h̄2. We see that the Hamiltonian can be rewritten as:

Ĥ = DŜ2
T −F (6)

where D and F are constants greater than zero. So what state
∣

∣ψ
〉

has the smallest
〈

ψ
∣

∣ Ŝ2
T

∣

∣ψ
〉

? The best we
could hope for is

∣

∣ψ
〉

such that
〈

ψ
∣

∣ Ŝ2
T

∣

∣ψ
〉

= 0.

C/CS/Phys 191, Spring 2005, Lecture 14 2



It is left to a homework problem to show that the following state

∣

∣ψ
〉

o =
1√
2

(∣

∣0
〉

1
∣

∣1
〉

2−
∣

∣1
〉

1
∣

∣0
〉

2
)

(7)

is an eigenstate of̂S2
T with eigenvalue 0.

We conclude from this that we can experimentally create a Bell state by putting 2spins next to each other
and then providing a perturbation such that the fall into the ground state!

2 Interaction Hamiltonians in General
Electron spins are hardly the only quantum system that can be entangled, so we might want to talk about
general entanglement through “interaction Hamiltonians.” In the most general sense, we can talk about two
quantum numbersx1 andx2 (i.e. quantized physical observables) that yield the following Hamiltonian:

Ĥ (x1,x2) = Ĥ1(x1)+ Ĥ2(x2)+ Ĥ ′ (x1,x2) (8)

whereĤ ′ (x1,x2) 6= Ĥ ′
1(x1)+ Ĥ ′

2(x2). If this is the case, then resultant energy eigenstates will not in general
be product states:

ψ (x1,x2) 6= ψ1(x1) ·ψ2(x2) (9)

This is the definition of entanglement! Therefore, in our quest for entanglement we need to focus our
attention on interaction Hamiltonians. In the case of spins,Ĥ = CŜ1 · Ŝ2 is such a Hamiltonian, and we will
explore others in coming lectures.

3 Introduction to Atomic Qubits
Whenever we think of qubits we will try to draw analogies to the spin-1/2 system,but let’s now consider
another very useful quantum system: Atoms!

What is an atom? How can it be thought of as a qubit?

Quick answer: An atom is a tiny box that holds electrons in discrete energy levels. If I can focus on one
particular electron that can hop between 2 different states, then that is a qubit!

Question: How do we measure and manipulate this qubit? Equivalently, how do we control
∣

∣ψ
〉

, the state
of the valence electron?

Answer: Apply a Hamiltonian!! Apply an external field that leads to someĤ (to quote Dr. Evil, this is
usually done with a “laser”).

Once we’ve created the desired Hamiltonian, as usual we solve the Schr. Equation (is this sounding like a
broken record yet?). The Hamiltonian drives the time development of the system through the time develop-
ment operatore−iĤt/h̄ and we can change

∣

∣ψ
〉

→
∣

∣ψ ′〉 .
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Note: if we keep our focus on only one electron hopping between two statesthen this problem isidentical to
the spin-1/2 problem! We have to relabel some quantities, but the physics (and ultimately the results) are the
same. Our atomic state (specified by the state of the valence electron)

∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

can be thought
of as a vector on the Bloch sphere, even though it’s not spin.

To move forward, however, we must have a better idea of
∣

∣0
〉

and
∣

∣1
〉

actually are, and how do we compute
Ĥ and its action on

∣

∣ψ
〉

.
∣

∣0
〉

and
∣

∣1
〉

are atomic energy levels for a single atom. Equivalently we could say
that

∣

∣0
〉

and
∣

∣1
〉

are the energy eigenstates for an electron orbiting a nucleus.

Ĥo
∣

∣0
〉

= Eo
∣

∣0
〉

Ĥo
∣

∣1
〉

= E1
∣

∣1
〉

(10)

So what is the Hamiltonian̂Ho describing this? We can focus on hydrogen because it’s conceptually simple.
Practically, experimentalists don’t usually work with hydrogen because it’spretty tricky to deal with. A
large chunk of modern atomic physics (esp. quantum computing research!) is done with hydrogenic atoms
(i.e. alkali metals and ions with a single valence electron).

Anyway, what isĤo for the simplest atom, hydrogen?̂Ho comes from classical energy:

E = KE +PE

E = p2

2m + −e2

r

(11)

So, in the quantum mechanical way, we turn classical observables like position and momentum into opera-
tors, and this gives us our hydrogenic Hamiltonian:

Ĥo = p̂2

2m + −e2

|r̂| (12)

To get the energy levels of hydrogen we just need to solve this Hamiltonian. This would be large aside for
this course, so if you’re interested (and you should be!) then you should take a QM course like 137A.

You can take it as given that this Hamiltonian yields quantized energy levels and nice, pretty-looking wave-
functions. Let’s take a look at the general form of these wavefunctions(expressed in the natural coordinate
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system, spherical coordinates):

ψn (~r) = ψnlm (r,θ ,φ) = Rnl (r)Ylm (θ ,φ)

Enlm = −13.6eV
n2

(13)

So we get electronic wavefunctions in three dimensions with three quantum numbers: n, l, and m. n is
called the principle quantum number, since it determines the energy. l is the magnitude of the orbital angular
momentum, it being the eigenvalue index of theL̂2 operator (this is exactly equivalent to s being the index
of the Ŝ2 operator, except that l can only take on integer values). m is the eigenvalue index ofL̂z (again, just
like m for Ŝz.

The energy levels can be degenerate (many quantum states at the same energy), and some degeneracies can
be lifted by various perturbations. We are going to ignore all this detail, whichagain would be coveredad
nauseum in a course like 137A.

Even though the hydrogenic Hamiltonian has resulted in a infinite number of possible states, we can assume
that the electron spends most of its time hopping between just two states and ignore the others. This is a
surprisingly good approximation!
∣

∣0
〉

→ Rnl (r)Ylm (θ ,φ) for somen, l, m; Eo = En,l,m
∣

∣1
〉

→ Rn′l′ (r)Yl′m′ (θ ,φ) for somen′, l′, m′; E1 = En′,l′,m′

Okay, now we know what
∣

∣0
〉

and
∣

∣1
〉

look like. What doesĤ look like in the restricted subspace defined
by

∣

∣0
〉

and
∣

∣1
〉

?

This is a slightly awkward question, since I already told you for an “unperturbed” atomĤ = Ĥo = p̂2

2m + −e2

|r̂| .

So, you might say that “̂H is a function of position,~r.” Or, you might say that “̂H is a 2×2 matrix.”

Both of these answers are correct! How do we reconcile them? KEY POINT: Ĥ looks different for different
bases!!

If we’re talking about the motion of an electron through space around the nucleus, then a convenient basis
is {

∣

∣~r
〉

}, the set of all points~r throughout space. In this case,Ĥ = f (~r), a function of~r ⇒ could construct a
matrix usingHr1,r2 =

〈

~r1
∣

∣ Ĥ
∣

∣~r2
〉

... but let’s not!

If we’re talking about jumps between two quantum levels,
∣

∣0
〉

and
∣

∣1
〉

, then a convenient basis is{
∣

∣0
〉

,
∣

∣1
〉

}.
This is a 2-D basis, sôH is a 2×2 matrix:

Ĥo →
(

H11 H12

H21 H22

)

(14)
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The moral of the story is to choose your basis wisely!

How do we construct the matrixHi j? We must find the matrix elements
〈

i
∣

∣ Ĥo
∣

∣ j
〉

:

H11 =
〈

0
∣

∣ Ĥo
∣

∣0
〉

= Eo
〈

0
∣

∣0
〉

= Eo

H12 =
〈

0
∣

∣ Ĥo
∣

∣1
〉

= E1
〈

0
∣

∣1
〉

= 0

H21 =
〈

1
∣

∣ Ĥo
∣

∣0
〉

= Eo
〈

1
∣

∣0
〉

= 0

H22 =
〈

1
∣

∣ Ĥo
∣

∣1
〉

= E1
〈

1
∣

∣1
〉

= E1

(15)

So our matrix becomes:

Ĥo →
(

Eo 0
0 E1

)

(16)

So, we now have the Hamiltonian that describes the state of an electron in an unperturbed atom. Note that

this looks just like the Hamiltonian for a spin in a magnetic field!Ĥ → eh̄
2m

(

Bo 0
0 −Bo

)

Let’s use this Hamiltonian to get some time-dependence going:

∣

∣ψ(t = 0)
〉

= α
∣

∣0
〉

+β
∣

∣1
〉

⇒
∣

∣ψ(t)
〉

= e−iĤot/h̄
∣

∣ψ(0)
〉

(17)

So, we get the following time dependent state:

∣

∣ψ(t)
〉

= α
∣

∣0
〉

e−iEot/h̄ +β
∣

∣1
〉

e−iE1t/h̄ (18)

Geometrically, this can be interpreted as a vector on the Bloch sphere, just like for spin (even though it’s not
actually spin).

If
∣

∣ψ(0)
〉

starts off at(θo,φo), at a timet later
∣

∣ψ(t)
〉

has rotated by∆φ around the ˆz axis at angular
frequencyωo = E1−E2

h̄ .

BUT, we see thatĤ will never induce “spin-flips,” i.e. change ratio between
∣

∣0
〉

and
∣

∣1
〉

(i.e. changeθ ).
How do we dothat? We’ll see next lecture...
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