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1 Atomic Qubits
Consider an atom where only 2 atomic states are important:

∣

∣0
〉

,
∣

∣1
〉

refer to atomic orbitals:

∣

∣0
〉

,
∣

∣1
〉

→ ψnlm (r,θ ,φ)
∣

∣s,ms
〉

= Rnl (r)Ylm (θ ,φ)
∣

∣s,ms
〉

Atomic wave function can be quite complex, but let’s not worry about this detail (can be looked up in any
number of books). We’ll just assume it exists.

What doesĤo look like in the basis of
∣

∣0
〉

,
∣

∣1
〉

? We showed before that it looks likêHo =

(

Eo 0
0 E1

)

.

Note that the energy difference (E1−Eo) plays the same role asBo did for spin!

Now consider an arbitrary electronic state:
∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

. How does it change in time?
∣

∣ψ(t)
〉

=

e−iĤot/h̄
∣

∣ψ
〉

= αe−iEot/h̄
∣

∣0
〉

+βe−iE1t/h̄.

We can project this onto the Bloch sphere (just like spin!):
∣

∣ψ(t)
〉

→ α
∣

∣0
〉

+βe−i(E1−Eo)t/h̄
∣

∣1
〉

.

We immediately see that the state vector spins around the z-axis withωo = E1−Eo
h̄ . But, althoughĤo causes

∣

∣ψ(t)
〉

to spin around the z-axis, it will never cause it to change “latitude” on the Bloch sphere. This means
that that for the unperturbed Hamiltonian, there are no spin flips or transitions... how can we accomplish
this?

Question: How do we change our atomic qubit state in a way thatθ changes where
∣

∣ψ
〉

= α
∣

∣0
〉

+β
∣

∣1
〉

=

cos θ
2

∣

∣0
〉

+ eiφ sin theta
2

∣

∣1
〉

?

Answer: Need to perturb our system with a “Force Field” so that the Hamiltonian gets off-diagonal ele-
ments!!

Ĥ →

(

H11 H12

H21 H22

)

In order to change ratio between occupancy of
∣

∣0
〉

and
∣

∣1
〉

we must haveH12 6= 0. There are no off-diagonal
terms inĤo, so we need a new term in the Hamiltonian.
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How do we get a new term? One natural way would be turn on an external electric field. This applies a
force that causesH12 6= 0 and induces “vertical” rotations on Bloch sphere in exactly the same manneras~B
did for spin. To understand this, we must understand what happens when we subject an atom to an~E-field.
How do we do this? Solve the Schrodinger equation, of course.

First off, we need to find the perturbing Hamiltonian. That is, the electric fieldcontributes to the energy of
the system, and this must be accounted for in our overall Hamiltonian.

So what is the classical energy of an atom in an~E-field? We must find the energy of this “perturbation.”

Let’s first consider a static E-field:

Only worry about the electron, since it is much lighter than nucleus.

~F = −e~E = −eE ′ẑ

energy = U = −
∫

~F ·d~r

U = −
∫

−eE ′ẑ ·d~r =
∫

eE ′dz = eE ′z

So the potential energy depends on z-location of electron. This is the energy term that causes transitions
between

∣

∣0
〉

and
∣

∣1
〉

!! Our complete Hamiltonian is noŵH = Ĥo + Ĥ ′, whereĤ ′ = eE ′z. The “z” in
the last term is actually the z-operator, but the hat might get confused with the unit vector so we drop it
here. (Incidentally, the British have a handy way to denote vectors which alleviate this hat-vector-operator
confusion. They express vectors by underlining variables with tilde’s ( )... too bad we’re not British.)

Ĥ ′ is called the “dipole” Hamiltonian since if we define an electric dipole~p = −e~r. (Another unfortunate
variable confusion... this is certainly NOT momentum!)

Ĥ ′ = −~p ·~E = −(−e~r) ·E ′ẑ = eE ′z

So how doesĤ ′ change the 2×2 representation of̂H, and how can this be used to control
∣

∣ψ
〉

?

To see how qubit changes under influence of perturbation we must findĤ and solve the time-dependent
Schrodinger equation. Again, we express the Hamiltonian as a matrix:

Ĥ →

(

H11 H12

H21 H22

)

C/CS/Phys 191, Spring 2005, Lecture 15 2



It is our job to now calculate these matrix elementsHi j. Let’s start withH11:

H11 =
〈

0
∣

∣

(

Ĥo + eE ′z
)∣

∣0
〉

=
〈

0
∣

∣ Ĥo
∣

∣0
〉

+
〈

0
∣

∣eE ′z
∣

∣0
〉

= Eo +
〈

0
∣

∣eE ′z
∣

∣0
〉

So let’s find
〈

0
∣

∣eE ′z
∣

∣0
〉

. This is most easily accomplished in spherical coordinates:

〈

0
∣

∣eE ′z
∣

∣0
〉

=
∫

r

∫

θ

∫

φ
R∗

nl(r)Y
∗
lm(θ ,φ)

(

eE ′rcosθ
)

Rnl(r)Ylm(θ ,φ)r2sinθdrdθdφ

As it turns out, this integral is zero. There is an electric dipole selection rule that states that∆l = ±1 for
the angular integral to be nonzero. In this case∆l = 0, so the whole above integral is zero. This means that
H11 = Eo. Similarly,

〈

1
∣

∣eE ′z
∣

∣1
〉

= 0 soH22 = E1.

But what about the crucialH12 ( = H∗
21 ) term?

H12 =
〈

0
∣

∣

(

Ĥ0 + eE ′z
)∣

∣1
〉

=
〈

0
∣

∣ Ĥo
∣

∣1
〉

+
〈

0
∣

∣eE ′z
∣

∣1
〉

but
〈

0
∣

∣ Ĥo
∣

∣0
〉

= E1
〈

0
∣

∣1
〉

= 0. So we’re left with finding
〈

0
∣

∣eE ′z
∣

∣1
〉

... to do this, we need to calculate this
integral:

〈

0
∣

∣eE ′z
∣

∣1
〉

=
∫

r

∫

θ

∫

φ
R∗

nl(r)Y
∗
lm(θ ,φ)

(

eE ′rcosθ
)

Rnl(r)Ylm(θ ,φ)r2sinθdrdθdφ

Because
∣

∣0
〉

6=
∣

∣1
〉

they may have differentl and the states may be chosen such that∆l = l′− l =±1 so that
the above integral has a nonzero value.

Assume the integral is known, and we can defineV1 =
〈

0
∣

∣eE ′z
∣

∣1
〉

. SinceĤ is Hermitian, we know that
H21 = V ∗

1 . So, we write down our Hamiltonian matrix:

Ĥ →

(

Eo V1

V ∗
1 E1

)

We immediately see that the off-diagonal matrix elements are nonzero and we can induce transitions between
∣

∣0
〉

and
∣

∣1
〉

! What does this look like geometrically on the Bloch sphere? Here we use the analogy to spin.

The energy difference plays the role of~B = Boẑ. The applied~E-field plays the role of the perpendicular
magnetic field~B1. The off-diagonal matrix elementV1 plays the role of~B1 = Bxx̂. What happens?Bx = V1

causes total~B-field to “tilt,” and
∣

∣ψ
〉

rotates around new total~B-field:

So, the latitude on Bloch sphere does change, i.e. “θ ” will NOT change by much unless~Bx ≈ ~Bo. In other
words, for a significant change inθ we needV1 ≈ E1−Eo.

Unfortunately this is easier said than done in the case of atoms. It would require fields on the order of
Volts/Angstrom, since the size of an atom is about 1 Angstrom andE1−Eo ≈ 1eV . The capacitor plates
would need to be extremely close, and this is unreasonable.

So, what else can we do to control the state of our electronic qubit? How canwe change “θ ”?
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Answer: Use resonance technique, which is exactly what we did for spin resonance!

Oscillate the~E-field at the frequencyωo = E1−Eo
h̄ ... this allows us to controlθ(t) very precisely. So, let’s

modify our static electric field to be oscillatory:

~E ′ → E ′cosωotẑ

It is important to note that the frequencyωo is very large! E1 − Eo ≈ eV ⇒ ωo ≈ 1015Hz. That’s the
frequency of light!

So, to create~E = E ′cosωotẑ, we don’t use a capacitor plate but instead we shine light on the atom!! Lightis
exactly the oscillatory field we need.

So, what does an atomic qubit do when we shine light on it? We must solve the Schr. equation:ih̄ ∂
∂ t

∣

∣ψ
〉

=
Ĥ

∣

∣ψ
〉

Ĥ →

(

Eo V1cosωot
V ∗

1 cosωot E1

)

This is essentially the same problem that we solved before for an oscillating~B applied to spin. Before we
found that

∣

∣ψ(t)
〉

= cos ω1t
2

∣

∣0
〉

+ ei(ωot+π)sin ω1t
2

∣

∣1
〉

whereωo ∝ Bo, ω1 ∝ B1.

Now we can map our atomic system onto the spin problem and we see thatωo = E1−Eo
h̄ (the qubit energy

splitting) andω1 = V1
h̄ (the intensity of light atωo shined on the qubit.

∣

∣ψ
〉

now changes latitude on Bloch
sphere at rateω1 = V1

2h̄ .

OK, so now we see that we can control
∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

= cos θ
2

∣

∣0
〉

+ eiφ sin θ
2

∣

∣1
〉

very precisely by
shining well-timed pulses of light at the atomic qubit. Suppose we put atom into such an arbitrary state.
How do we measureα andβ?

One attractive answer is fluoresence. What we can do is pick atom that has a third state
∣

∣2
〉

that couples to
∣

∣1
〉

but NOT to
∣

∣0
〉

!!

You might wonder how this would work. We stated before that dipole transitions require∆l = ±1. We
could make our three state system as follows:

∣

∣0
〉

=
∣

∣l = 0
〉

,
∣

∣1
〉

=
∣

∣l = 1
〉

, and
∣

∣2
〉

=
∣

∣l = 2
〉

. We can
immediately see that we’ll get transitions from

∣

∣0
〉

→
∣

∣1
〉

and
∣

∣1
〉

→
∣

∣2
〉

, but no transitions from
∣

∣0
〉

→
∣

∣2
〉

!

So, if we want to measure whether the atom is in either state
∣

∣0
〉

or
∣

∣1
〉

, we can just shine light on the atom
of frequencyE2−E1

h̄ . If the atom is in state
∣

∣0
〉

, then nothing happens. But, if the atom is in the state
∣

∣1
〉

then
the electron will absorb a photon and get pushed up to state

∣

∣2
〉

. The electron will then tend to fall back
down the energy ladder and re-radiate the photon.This can be detected!
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This is just like Stern-Gerlach, in the sense that we get a different signalif electron is in the state
∣

∣0
〉

and
∣

∣1
〉

. Our recipe for measuring|α | and|β |: we prepare an atom in the state
∣

∣ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

and then
shine light on it and see if it absorbed a photon. Then we prepare the stateagain and repeat the experiment.
Suppose you do this 1000 times and it absorbs the photon 800 times. What isβ?

|β |2 = probability =
800
1000

=
8
10

⇒ |β | =
√

8
10

, |α| =

√

2
10

But what about the relative phase betweenα andβ? This is more difficult, because we have to rotate
∣

∣ψ
〉

by 90o around ˆy and measure< Sz > to get< Sx >. Similarly we need< Sy > because< Sx > and< Sy >
defineφ . Tricky, but doable...
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