C/CS/Phys 191	Photons as Qubits
Spring 2005	

1 Photons

Photons are pretty versatile, and there are may ways to use photons as qubits! First, let's think about what a photon is.

Consider classical electricity and magnetism, which are governed by Maxwell's equations. Let's have a look at Maxwell's equations in an insulating, non-magnetic dielectric material:

$$\nabla \cdot \varepsilon \vec{E} = 0 \qquad \nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \qquad \nabla \cdot \vec{B} = 0 \qquad \nabla \times \vec{B} = \frac{\varepsilon}{c} \frac{\partial \vec{E}}{\partial t} \tag{1}$$

For a dielectric material, ε is the dielectic constant which determines the polarizability of the material.

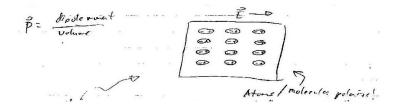
The great triumph of Maxwell's equations is the prediction of traveling E and M waves. (The behavior of a photon is closely linked to the classical \vec{E} and \vec{B} fields.) A wave solution for the electric field might look like:

$$\vec{E}\left(\vec{r},t\right) = \vec{E}_o \cos\left(\vec{k}\cdot\vec{r} - \omega t\right) \tag{2}$$

We also have that the magnetic field must be perpendicular to the electric field for a wave solution, so $\vec{B}(\vec{r},t) = \vec{B}_o cos(\vec{k} \cdot \vec{r} - \omega t)$, with \vec{B}_o perpendicular to \vec{E}_o . Maxwell's equations also force \vec{E} and \vec{B} to be perpendicular to the propagation vector \vec{k} , so we are given a natural orthogonal basis set for 3D, with $\vec{E}_o \times \vec{B}_o$ parallel to \vec{k} .

In cgs units, $|\vec{B}| = |\vec{E}|$, so let's ignore the \vec{B} -field entirely since if we know \vec{E} then we know \vec{B} . Also in a material it's the \vec{E} -field that couples more strongly to electrons ($\vec{F} = q\vec{E}$), so the \vec{E} -field is more important.

So, we have traveling wave solutions. The phase velocity of any wave is given by $v_{ph} = \frac{\omega}{k} = \frac{c}{\sqrt{\varepsilon}}$, where $k = \frac{\omega}{c}\sqrt{\varepsilon}$. Perhaps more familiar is the index of refraction, $n = \sqrt{\varepsilon}$. For light, we have $v_{light} = \frac{c}{n}$, with $\sqrt{\varepsilon} = 1$ for vacuum. ε depends on material properties, and relates to the *polarizability* of a material: $\varepsilon = 1 + \frac{4\pi |\vec{p}|}{|\vec{E}|}$, where $\vec{p} = (\text{dipole moment})/\text{volume}$.



The more they polarize the bigger ε is and the slower light travels! Note: some materials might polarize more in one direction than another. The speed of light would thus be different for different polarizations of light.

Definition: The *polarization* of light is the direction that \vec{E} points.

So what is a polarizer? This is a material that only allows light to pass with \vec{E} polarized in a particular direction.

What about the energy of light? Classically a light wave fills a volume and has an energy density associated with it:

$$\rho = \frac{energy}{volume} = \frac{|\vec{E}|^2}{8\pi} \tag{3}$$

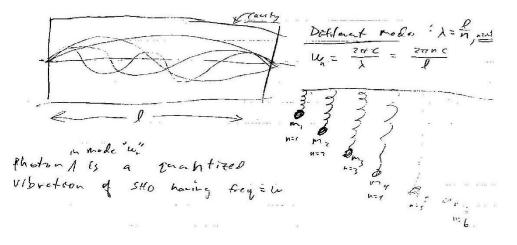
So the energy of a light wave in a volume of space (V) is:

$$U = \rho V = \frac{|\vec{E}|^2}{8\pi} V \tag{4}$$

Fact: Light actually travels in packets of energy called photons. Each photon has an \vec{E} -field and a frequency (ω) associated with it. In quantum mechanics, we know that the energy of a particle is proportional to its frequency, so we should have that $U_{photon} = \hbar \omega$. This is the *quanta* of energy associated with a the particle of light, the photon.

So why is light quantized? There are different ways to approach this. The full treatment is known as *quantum electro-dynamics*. We will not derive this, but if you are interested there is an excellent book by Richard Feynman on the subject entitled *QED*.

One way to think about the quantization of light is that if I have a light in a cavity (i.e. a box), the space inside the cavity can be thought of as a bunch of simple harmonic oscillators with different frequencies. Each frequency is a mode of the cavity, and just like waves on a string (or particle in a box!!), we have a discrete spectrum of allowable modes which fit in the cavity:



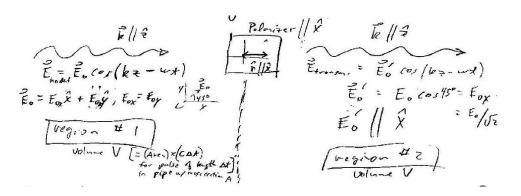
Consequence of Quantization:

1. The number of photons (N) in a light wave depends on magnitude of \vec{E} -field:

$$U = \frac{E_o^2}{8\pi} V = N\hbar\omega \qquad \Rightarrow \qquad N = \frac{E_o^2 V}{8\pi\hbar\omega} \tag{5}$$

C/CS/Phys 191, Spring 2005, Lecture 16

2. Probabilistic behavior: Suppose we shine light on a polarizer. How do we interpret the behavior in terms of photons?



In region 1 we have N photons, all identical with \vec{E}_o and ω . The number of photons in region 1 is given by $N = \frac{E_o^2 V}{8\pi\hbar\omega}$.

In region 2, we have N' photons, all identical with \vec{E}'_o and ω . The number of photons in region 2 is given by $N' = \frac{E'_o^2 V}{8\pi\hbar\omega} = \frac{1}{8\pi} \frac{(E_o/\sqrt{2})^2 V}{\hbar\omega} = \frac{1}{2} \frac{E_o^2 V}{8\pi\hbar\omega}$. We then conclude that

$$\frac{N'}{N} = \frac{1}{2} \tag{6}$$

But this is strange since all the photons in region 1 are *identical*. Why do only half get through? Transmission must be probabilistic process, and we are therefore led to a probabilistic/QM interpretation. The probability of transmission for the preceding example is readily given by:

$$prob = \frac{E_{ox}^2}{E_{ox}^2 + E_{oy}^2} \tag{7}$$

Thus the components of the \vec{E} -field in different directions act as probability amplitudes, just like the probability for measuring $|0\rangle$ on a general state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ is:

$$prob = \frac{|\alpha|^2}{|\alpha|^2 + |\beta|^2} \tag{8}$$

So we can think of the components of an \vec{E} -field vector as a QM observable! The photon with electric field $\vec{E} = E_{ox}\hat{x} + E_{oy}\hat{y}$ can be thought of as living in a state $|\psi\rangle$ where:

$$\left|\psi\right\rangle = \left(\begin{array}{c}\psi_{x}\\\psi_{y}\end{array}\right) \tag{9}$$

with $\psi_x(\psi_y)$ being the x-polarized (y-polarized) component.

C/CS/Phys 191, Spring 2005, Lecture 16

The \hat{x} and \hat{y} polarization vectors form a basis! Suppose we have $\vec{E}_o = E_{ox}\hat{x} + E_{oy}\hat{y}$. We can rewrite this state in familiar QM language:

$$\left|\psi\right\rangle = \begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix} = \cos\theta\left|x\right\rangle + \sin\theta\left|y\right\rangle \tag{10}$$

The polarization of the photon is our new qubit variable: $|0\rangle = |x\rangle$ and $|1\rangle = |y\rangle$. Nice! Now how do we measure and transform this qubit?

Here we again draw an analogy to spin, and the polarizer plays the same role a Stern-Gerlach device.

Consider the Bloch sphere with general quantum state vector $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$. A polarizer at angle θ' w.r.t. \hat{x} leads to:

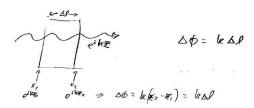
$$|\psi\rangle_{photon} = \cos\theta' |x\rangle + \sin\theta' |y\rangle = \cos\frac{\theta}{2} |0\rangle + e^{i\phi} \sin\frac{\theta}{2} |1\rangle$$
⁽¹¹⁾

This equality leads us to identify $\theta = 2\theta'$ and $\phi = 0$ in this case.

For this to be analogous to spins, however, we must be able to vary ϕ . How do we do this? Is it even possible to get a relative phase terms with polarization?

The answer of course is yes, and the way this is done is to find a material where the index of refraction is different in \hat{x} and \hat{y} directions! This means that the velocity is different for \hat{x} and \hat{y} components. This is the case in *anisotropic* media with different polarizability in \hat{x} and \hat{y} :

If this is the case, then light polarized along \hat{y} will go $\approx 10\%$ faster than light polarized along the \hat{x} direction. If the material has length Δl then we can calculate the phase difference for light passing through to be $\Delta \phi = k \Delta l$:



For light with $\vec{E}||\hat{y}$, we have $k_y = \frac{\omega}{c}n_y$. Similarly, for light with $\vec{E}||\hat{x}$, we have $k_x = \frac{\omega}{c}n_x$. Thus the phase change through the material for the y-component (x-component) is $\Delta\phi_y = \frac{\omega}{c}n_y\Delta l$ ($\Delta\phi_x = \frac{\omega}{c}n_x\Delta l$. So, if our input state is $|\psi\rangle_{in} = \cos\frac{\theta}{2}|x\rangle + \sin\frac{\theta}{2}|y\rangle$, then the output state is:

$$|\psi\rangle_{out} = \cos\frac{\theta}{2} e^{i\frac{\omega}{c}n_x\Delta l} |x\rangle + \sin\frac{\theta}{2} e^{i\frac{\omega}{c}n_y\Delta l} |y\rangle$$
(12)

Rewriting, we see:

$$|\psi\rangle_{out} = \cos\frac{\theta}{2}|x\rangle + \sin\frac{\theta}{2}e^{i\frac{\omega}{c}(n_y - n_x)\Delta l}|y\rangle$$
(13)

so ϕ on the Bloch sphere is $\frac{\omega}{c} \Delta l(n_y - n_x)$. Therefore we see that this anisotropic medium has played the same role that the transverse \vec{B} -field did for spin.