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1 Schrodinger equation (continued)

1.1 Energy eigenstates
Last time we saw that the Schr. Equation determines how the wave function of aparticle develops in time:

ih̄
∂
∂ t

ψ(x, t) =
−h̄2

2m
∂ 2

∂x2 ψ(x, t)

This can be rewritten as:

ih̄
∂
∂ t

ψ(x, t) = Ĥψ(x, t)

whereĤ is an energy operator̂H = −h̄2

2m
∂ 2

∂x2 .

This is not something that can really be derived. This is a postulate. It’s a starting point. We can try to justify
it and show that it makes sense and is reasonable, but we can’t deriveit. Perhaps the strongest justification is
that it explains experiments. It correctly explains the world around us. Ina regular physics class we’d spend
a lot of time talking about all those experiments, and how they’re explained byQM.

But this is not a regular physics class. This class is called ”Qubits, QM, andComputers,” so the most
important point for us here is that this equation describes the behavior of qubits, the elements that carry
quantum information. Understanding this equation will help us to manipulate qubitsand create quantum
gates.

The first thing to note is that there is a special relationship in QM between the energy of a system and its
time development.A Trick: The Sch. equation can be broken into two pieces if we writeψ as a product:
ψ(x, t) = ψ(x)φ(t). This is calledseparation of variables. This gives us:

Ĥψ(x) = Eψ(x)

and

φ(t) = e−iEt/h̄

Ĥψk(x) = Ekψk(x) is a condition that must be satisfied to find the states{ψk} that well-defined energy{Ek}.
It’s an eigenfunction equation. (Time dependence is easy:ψ(x, t) = ψ(x)φ(t) = ψk(x)e−iEt/h̄.)
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But what does ”well-defined” energy mean? It means two things: (1) A state ψ has well-defined energy if
Ĥψ = Cψ where ”C” = energy of state. (2) A stateψ has well defined energy if an ensemble (read, many
copies) of systems all prepared in the stateψ give the same answer if you measure energy (i.e. E = ”C” if
Ĥψ = Eψ).

Consider, for example, two statesψ1 andψ2 such thatĤψ1 = E1ψ2 andĤψ2 = E2ψ2. We also required that
E1 6= E2, which in quantum mechanical language means that theeigenvalues are non-degenerate. Suppose
I take 106 qubits prepared in stateψ1 and measure their energy and make a histogram. What does the
histogram look like? See Figure 1(a).

Now suppose that I prepare 106 qubits in the stateψ ′ =
√

3
5ψ1 +

√

2
5ψ2, measuretheir energies, and make

a histogram. How does it look? See Figure 1(b)
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Figure 1: Histograms of particle energy measurements.

Ask yourself, isψ ′ a state with well-defined energy?NO. Why not?ψ ′ is not an eigenstate of the Hamilto-
nian operator. Let’s check this:

Ĥψ ′ = Ĥ

(

√

3
5

ψ1 +

√

2
5

ψ2

)

=

√

3
5

E1ψ1 +

√

2
5

E2ψ2

Does this equal (constant)×(ψ ′)? No, because as statedE1 andE2 are not equal. Thereforeψ ′ is not an
eigenstate of the energy operator and has no well-defined energy.

1.2 Time dependence
So how do these states change in time? Supposeψ(x, t = 0) = ψ1(x) whereĤψ1 = E1ψ1(x). What is
ψ(x, t 6= 0)?

ψ(x, t) = ψ1(x)e
−iEt/h̄
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But what if ψ(x, t = 0) = ψ ′ =
√

3
5ψ1 +

√

2
5ψ2? What’sψ(x, t 6= 0) in this case?

ψ(x, t) =

√

3
5

ψ1e−iE1t/h̄ +

√

2
5

ψ2e−iE2t/h̄

Each piece of the wavefunction with well-defined energy dances to its own littledrummer. It spins at
frequency ∝ its energy.

But what if I give youψ(x, t = 0) = f (x) where f (x) is an arbitrary function? What isψ(x, t 6= 0) in this
case? This strategy is the same. You must solveĤψk(x) = Ekψk(x) to get the eigenstates{ψk} and their
associated energies{Ek}. Then, you expressf (x) as f (x) = a1ψ1(x)+ a2ψ2(x)+ a3ψ3(x)+ · · · , a linear
superposition of the energy eigenstates{ψk}. Note that you must find the overlap:ai =< ψx| f > for this to
be meaningful. In position space, this is accomplished by the integral:

< ψi| f >=
∫ ∞

−∞
ψ∗

i (x) f (x)dx

The time dependence is then given by

ψ(x, t) = a1ψ1(x)e
−iE1t/h̄ +a2ψ2(x)e

−iE2t/h̄ +a3ψ3(x)e
−iE3t/h̄ + · · ·

So time dependence in QM is easy if you know the{ψk}’s. The set{ψk} forms a special basis. If you write
ψ in this base then time dependence is easy!

This is often called the basis of stationary states. Why? Because ifψ = ψi(x) whereĤψi = Eiψi then
ψ(x, t) = ψi(x)e−iEit/h̄. The probability densityP(x, t) is then given by

P(x, t) = |ψ(x, t)|2 =
(

ψi(x)e
−iEit/h̄

)∗(

ψi(x)e
−iEit/h̄

)

= |ψi(x)|2

Therefore the time dependence for the probability density dropped out does not change in time.

Let’s do an example now! Let’s consider a situation where we want to use theelectrons inside atoms as
qubits. How do we describe the physical details of these qubits? What are their allowed energies? How do
they change in time?What do we do??? We solve the Schr. equation, that’s what.

As is the case in most QM problems, we must find the HamiltonianĤ. Ĥ in this case is the energy operator
for an electron in an atom. To know this then we must make some assumptions about how electrons behave
in an atom.

Let’s assume that atoms are very tiny (≈ 10−10 meter) 1-D boxes with very hard walls. The walls are
located at positionx = 0 andx = l. This model works surprisingly well. Inside the box̂H is given by the
free particle Hamiltonian̂H = − h̄2

2m
∂ 2

∂x2 . Outside the box we model the very hard walls as points where the
potential energy V→ ∞. This has the effect ofdisallowing any ψ to be nonzero in this region. If it did
exist in this region its energy (obtained, as always, by applying the Hamiltonian) would also go to infinity.
That’s too much energy for our little electrons, so we can say that we will restrict our wavefunctionsψ(x)
to functions which vanish atx ≤ 0 andx ≥ l.
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ψ(x = 0) = ψ(x = l) = 0

Strictly speaking, we mean thatψ(x ≤ 0) = ψ(x ≥ l) = 0. We will see that this will allow us to construct
wavefunctions which are not normalized over all spacex ∈ {−∞,∞} but instead are normalized over our
restricted box spacex ∈ {0, l}. The system as we’ve described it can be sketched is sketched in Figure2.

x
x = 0 x = L

V(x) = 0

V(x) = infinity

for x < 0

V(x) = infinity

for x > L

particle lives in here

wavefunction = 0

particle never here

wavefunction = 0 for x < 0

particle never here

wavefunction = 0 for x < 0

Figure 2: Particle in a box

The first thing to note is that we’ve done this problem before! For a free particle we know that we have
solutionsψE(x) = Aeikx + Be−ikx with energiesEk = h̄2k2

2m . Are we done? No, because we need to impose
our boundary condition thatψ(x = 0) = ψ(x = l) = 0 since those walls are hard and do not allow particles
to exist outside of the free particle box we’ve constructed.

Our previous solutionψE(x) = Aeikx + Be−ikx is fine, but we can also write another general solution as
follows:

ψE(x) = C sin(kx)+Dcos(kx)

As we will see, this is a convenient choice. If we know impose our first boundary conditions:

ψE(x = 0) = 0 = C sin[k(x = 0)]+Dcos[k(x = 0)] = C(0)+D(1) = D

SoD = 0 and we can forget about the cosine solution. The second boundary condition tells us:

ψE(x = l) = 0 = C sin(kl) = 0

This is satisfied for allkl = nπ, wheren is an integer. Therefore, we havekn = nπ
l which gives us our

quantized eigenfunction set. The energy eigenvalues are

En =
h̄2k2

n

2m
=

h̄2n2π2

2m

with eigenfunctions
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ψn(x) = Csin
nπ
l

x

Are we done? No, because we must normalize.

< ψn|ψn >=
∫ l

0
|ψn(x)|2dx = 1⇒

∫ l

0
C2sin2

(nπ
l

x
)

dx = 1⇒C =

√

2
l

So normalization has given us our proper set of energy eigenfunctionsand eigenvalues:

ψn(x) =

√

2
l

sin
(nπ

l
x
)

,En =
h̄2n2π2

2ml2

Higher energy states have more nodes. Some of the wavefunctions can besketched as follows:

x
x = 0 x = L

V(x) = infinity

for x < 0

V(x) = infinity

for x > L

n=1

nn==22

n=3

Figure 3: The first three eigenfunctions of the particle in a box system.

What does this have to do with the discrete quantum state picture as describedin the context of qubits? To
obtain a qubit from this system, we can construct our standard basis|0 > and |1 > by just restricting our
state space to the bottom two eigenstates:

|0 >=

√

2
l

sin
(π

l
x
)

,E0 =
h̄2π2

2ml2

|1 >=

√

2
l

sin

(

2π
l

x

)

,E1 =
4h̄2π2

2ml2
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Physically this would mean forcing the total energy of the system to be less thanE2, meaning that the particle
could never have any overlap withψk for k ≥ 2.

Suppose, as we have in the past, that the state of the electron qubit is|ψ(t = 0) >= 1√
2
|0 > + 1√

2
|1>. What

is the state att 6= 0?

|ψ(t) >=
1√
2

(

√

2
l

sin
(π

l
x
)

)

e−iE0t/h̄ +
1√
2

(

√

2
l

sin

(

2π
l

x

)

)

e−iE1t/h̄

2 Other eigenbases
Now, the previous discussion was carried out in the ”energy” basis, bywhich we mean we sought the
eigenstates of the Hamiltonian and expressed our quantum states in that eigenbasis. This is, of course, very
convenient for describing the time development of the state. But sometimes youmight want to write a qubit
state in terms of the eigenstates of a different physical quantity.

For example, you might want to describe the wavefunction of your qubit in terms of basis states that have
well-defined position, or momentum, or angular momentum. Each of these bases can be found by solving
a corresponding eigenvalue problem. In order to get these ”well-defined” states you just have to know the
operators and solve the eigenvalue problem.

HOWEVER: While you can always construct an eigenstate ofone physical quantity, you might not be able to
construct a state that is a simultaneous eigenstate of two physical quantities; i.e. a state that has well-defined
values for two observables.

Question: Is it possible to construct a stateψx,p such that ˆxψx,p(x) = xoψx,p(x) AND p̂ψx,p(x) = pψx,p(x)?
Such a state would have simultaneously well-defined position (xo) and momentum (p).

3 Commutators
A relevant theorem to help answer the question:

Theorem: Consider two operatorsÂ andB̂ (representing two physical quantities). It is possible to construct a
simultaneous eigenstate,ψab, of bothÂ andB̂ iff [Â, B̂] = 0 where[Â, B̂]ÂB̂− B̂Â is the commutator between
Â andB̂.

Proof (kind of): One can easily show that if[Â, B̂] = 0 then simultaneous eigenstates exist. Suppose{φa} is
a set of non-degenerate eigenstates ofÂ ⇒ Âφa = aφa. Now considerB̂(Âφa) = a(B̂φa). But, B̂Â = ÂB̂ from
the commutator, sôA(B̂φa) = a(B̂φa). So we conclude that(B̂φa) is an eigenstate of̂A with eigenvalue ”a”.
So,B̂φa ∝ φa which means that̂Bφa = bφa. Thereforeφa is a simultaneous eigenstate ofÂ andB̂.

So, to answer the question of whether we can construct a state of well-defined position AND momentum,
then we must see if[x̂, p̂] = 0 or not.

First, what is ˆp?? We know from before that

Ĥ =
p̂2

2m
= − h̄2

2m
∂ 2

∂x2 ⇒ p̂2 = −h̄2 ∂ 2

∂x2 ⇒ p̂ = sqrt−h̄2 ∂ 2

∂x2 =
h̄
i

∂
∂x

Let’s test this operator ˆp = h̄
i

∂
∂x on an test state:
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ψk(x) = h̄
i

∂
∂x

(

eikx
)

= h̄keikx = pψk(x)

Since we are working in the continuous basis|x > where ˆx = x (meaning the position operator is justthe
function x), we can check the commutator in this basis:

[

x,
h̄
i

∂
∂x

]

=?

Notice the commutator is itself an operator, in this case one that is begging to operate on some function.
Let’s apply it to a test functionf (x) and see what happens:

[

x,
h̄
i

∂
∂x

]

f (x) =
h̄
i

(

x
∂
∂x

− ∂
∂x

x

)

f (x) =
h̄
i

(

x
∂ f
∂x

− ∂
∂x

(x f (x))

)

=
h̄
i

(

x
∂ f
∂x

− f (x)− x
∂ f
∂x

)

= ih̄ f (x)

We see the test functionf (x) is irrelevant and we can state that

[x̂, p̂] = ih̄ 6= 0

Therefore we can conclude that you cannot simultaneously know the position and momentum of a quantum
state with certainty. This is a restatement of the Heisenberg Uncertainty Principle using a different language.
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