## Data-driven Methods: Faces



CS194: Image Manipulation \& Computational Photography Alexei Efros, UC Berkeley, Fall 2014

## The Power of Averaging



## 8-hour exposure


© Atta Kim

## Image Composites



Sir Francis
Galton
1822-1911


Multiple Individuals


Composite
[Galton, "Composite Portraits", Nature, 1878]

## Average Images in Art


"60 passagers de 2e classe du metro, entre 9h et 11h" (1985)
Krzysztof Pruszkowski

"Spherical type gasholders" (2004) Idris Khan

## More by Jason Salavon



Homes for Sale


109 Homes for Sale, Seattle/Tacoma


121 Homes for Sale, LA/Orange County


117 Homes for Sale, Chicagoland


114 Homes for Sale, Dallas/Ft. Worth Metroplex


124 Homes for Sale, The 5 Boroughs


112 Homes for Sale, Miami-Dade County

More at: http://www.salavon.com/

## "100 Special Moments" by Jason Salavon



Little Leaguer


The Graduate


Kids with Santa


Why blurry?

## Object-Centric Averages by Torralba (2001)



Manual Annotation and Alignment


Average Image

Slide by Jun-Yan Zhu

## Computing Means

Two Requirements:

- Alignment of objects
- Objects must span a subspace

Useful concepts:

- Subpopulation means
- Deviations from the mean

Images as Vectors


Vector Mean: Importance of Alignment


How to align faces?

|  |
| :---: |
|  |  |
|  |  |
|  |  |

## Shape Vector



Provides alignment!

## Average Face



1. Warp to mean shape
2. Average pixels


## Appearance Vectors vs. Shape Vectors



Slide by Kevin Karsch

## Objects must span a subspace



## Example



## Does not span a subspace

## Subpopulation means

## Examples:

- Male vs. female
- Happy vs. said
- Average Kids
- Happy Males
- Etc.
- http://www.faceresearch.org


Average kid


Average happy male

Average female


Average male

## Average Women of the world



## Average Men of the world



AUSTRIA


CAMBODIA


MONGOLIA


AFGHANISTAN


ENGLAND



ARGENTINA



BURMA (MYANMAR)


FRANCE



GERMANY


IRAQ


UZBEKISTAN


GREECE


IRELAND


AFRICAN AMERICAN

## Deviations from the mean



Image X


Mean X

$$
\Delta X=X-\underline{X}
$$

## Deviations from the mean



## Extrapolating faces

- We can imagine various meaningful directions.


Slide by Kevin Karsch

## Manipulating faces

- How can we make a face look more female/male, young/old, happy/sad, etc.?
- http://www.faceresearch.org/demos/transform


Sub-mean 2

Slide by Kevin Karsch

# Manipulating Facial Appearance through Shape and Color 

Duncan A. Rowland and David I. Perrett
St Andrews University
IEEE CG\&A, September 1995

## Face Modeling

## Compute average faces

(color and shape)


Compute deviations
between male and female (vector and color differences)

## Changing gender

Deform shape and/or color of an input face in the direction of "more female"


## Enhancing gender


more same original androgynous more opposite

## Changing age

Face becomes "rounder" and "more textured" and "grayer"


## Back to the Subspace



## Linear Subspace: convex combinations



Any new image $X$ can be obtained as weighted sum of stored "basis" images.

$$
X=\sum_{i=1}^{m} a_{i} X_{i}
$$

Our old friend, change of basis! What are the new coordinates of $X$ ?

## The Morphable Face Model

The actual structure of a face is captured in the shape vector $\mathbf{S}=\left(x_{1}, y_{1}, x_{2}, \ldots, y_{n}\right)^{\top}$, containing the $(x, y)$ coordinates of the $n$ vertices of a face, and the appearance (texture) vector $\mathbf{T}=\left(R_{1}, G_{1}, B_{1}, R_{2}, \ldots, G_{n}\right.$, $\left.B_{n}\right)^{T}$, containing the color values of the mean-warped face image.


## Shape S

## Appearance T

## The Morphable face model

Again, assuming that we have $\boldsymbol{m}$ such vector pairs in full correspondence, we can form new shapes $\mathbf{S}_{\text {model }}$ and new appearances $\mathbf{T}_{\text {model }}$ as:

$$
\begin{aligned}
& \mathbf{S}_{\text {model }}=\sum_{i=1}^{m} a_{i} \mathbf{S}_{i} \quad \mathbf{T}_{\text {model }}=\sum_{i=1}^{m} b_{i} \mathbf{T}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \left.t=\beta_{1} \cdot \text { (2) }+\beta_{2} \cdot()^{2}\right)+\beta_{3} \cdot \beta_{4} \cdot(2)+\ldots=\mathbf{T} \cdot \beta
\end{aligned}
$$



If number of basis faces $\boldsymbol{m}$ is large enough to span the face subspace then:
Any new face can be represented as a pair of vectors
$\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)^{T}$ and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)^{T}$ !

## Issues:

1. How many basis images is enough?
2. Which ones should they be?
3. What if some variations are more important than others?

- E.g. corners of mouth carry much more information than haircut

Need a way to obtain basis images automatically, in order of importance!

But what's important?


## Principal Component Analysis

Given a point set $\left\{\overrightarrow{\mathbf{p}}_{j}\right\}_{j=1 \ldots P}$, in an $M$-dim space, PCA finds a basis such that

- coefficients of the point set in that basis are uncorrelated
- first $r<M$ basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) in the approximation (over all bases with dimension $r$ )




## PCA via Singular Value Decomposition



## Principal Component Analysis

Choosing subspace dimension $r$ :

- look at decay of the eigenvalues as a function of $r$
- Larger $r$ means lower expected error in the subspace data approximation



## EigenFaces

First popular use of PCA on images was for modeling and recognition of faces [Kirby and Sirovich, 1990, Turk and Pentland, 1991]

- Collect a face ensemble
- Normalize for contrast, scale, \& orientation.
- Remove backgrounds
- Apply PCA \& choose the first $N$ eigen-images that account for most of the variance of the data.



## First 3 Shape Basis



Mean appearance


## Using 3D Geometry: Blinz \& Vetter, 1999



MORE MALE

http://www.youtube.com/watch?v=jrutZaYoQJo

## Walking in the Face-graph!



Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, Steven M. Seitz. "Exploring Photobios." ACM Transactions on Graphics 30(4) (SIGGRAPH), Aug 2011.
http://vimeo.com/23561002

## Photobio

000 George Bush-Google Searc $x$

$U 0$
George Bush

About 409,000,000 results ( 0.49 seconds)
SafeSearch ~

Everything
Images
Maps
Videos
News
Shopping
Books
More

All results
By subject

Any size
Large
Medium
Icon
Larger than..
Exactly...

Any color
Full color Black and white


Related searches: george bush sr george h w bush george bush face george bush finger george bush confused


## Photobio

000 George Bush-Google Searc $x$

George Bush $\quad$ 国

Search

Everything
Images
Maps
Videos
News
Shopping
Books
More

All results
By subject

Any size
Large
Medium
Icon
Larger than..
Exactly...

Any color
Full color
Black and white


Related searches: george bush sr george $\mathrm{h} w$ bush george bush face george bush finger george bush confused


## Photobio

000 George Bush-Google Searc $x$

George Bush $\quad$ 国

## cha enecs

Non-rigid (facial expressions, age...)
Occlusions (hair, glasses ...)

## Arbitrary lighting, pose

Different cameras, exposure, focus ...


But: there are many photos!


447 pictures Dec 24, 1990 to Jul 4, $2011 \quad 637.2 \mathrm{MB}$ on disk


## Image registration



Kemelmacher, Shechtman, Garg, Seitz, Exploring Photobios, SIGGRAPH’11

## Image registration



Bourdev and Brandt '05


Fiducial points detection
Everingham et al. '06


Estimate 3D pose


Template 3D model

## 3D transformed photos

before
after


## Represent the photo collection as a graph



| Similarity |
| :--- |
| between |
| 2 photos |

3D Head
Pose
similarity
Facial
Time

Similarity<br>2 photos

$\square$

| Facial | Time |  |
| :---: | :---: | :---: |
| -Expression <br> similarity | $\bullet$ | similarity |

## Represent the photo collection as a graph



| Similarity |
| :--- |
| between |
| 2 photos |

3D Head
Pose
similarity

| Facial <br> Expression <br> similarity | $\bullet$ | Time |
| :---: | :---: | :---: |
| similarity |  |  |

## Represent the photo collection as a graph



| Similarity |
| :--- |
| between |
| 2 photos |

$\begin{array}{ccc}\text { 3D Head } & \begin{array}{c}\text { Facial } \\ \text { Pose }\end{array} & \text { - } \begin{array}{c}\text { Expression } \\ \text { similarity }\end{array} \\ & \text { similarity }\end{array}$
Time
E similarity

# Illumination-Aware Age Progression CVPR 2014 

Ira Kemelmacher-Shlizerman, Supasorn Suwajanakorn, Steven M. Seitz


3 years old


5-7


14-16


26-35


46-57


58-68


81-100
http://www.youtube.com/watch?v=QuKluy7NAvE

## Image-Based Shaving


http://graphics.cs.cmu.edu/projects/imageshaving/

The idea


## Processing steps



## 68 landmarks



## Some results



