#### Data-driven Methods: Faces



CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014

# The Power of Averaging



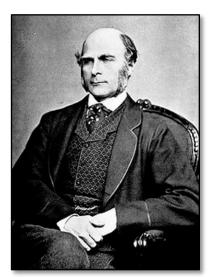


# 8-hour exposure



© Atta Kim

## Image Composites



Sir Francis
Galton
1822-1911



Multiple Individuals



Composite

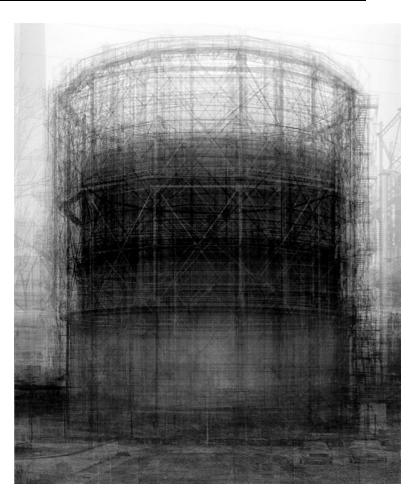
[Galton, "Composite Portraits", Nature, 1878]

#### Average Images in Art



"60 passagers de 2e classe du metro, entre 9h et 11h" (1985)

Krzysztof Pruszkowski



"Spherical type gasholders" (2004) Idris Khan

## More by Jason Salavon



More at: <a href="http://www.salavon.com/">http://www.salavon.com/</a>

#### "100 Special Moments" by Jason Salavon



# Object-Centric Averages by Torralba (2001)



Manual Annotation and Alignment



Average Image

Slide by Jun-Yan Zhu

## **Computing Means**

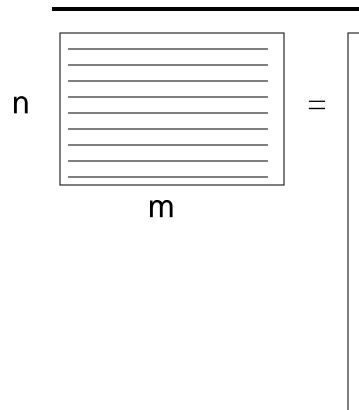
#### Two Requirements:

- Alignment of objects
- Objects must span a subspace

#### Useful concepts:

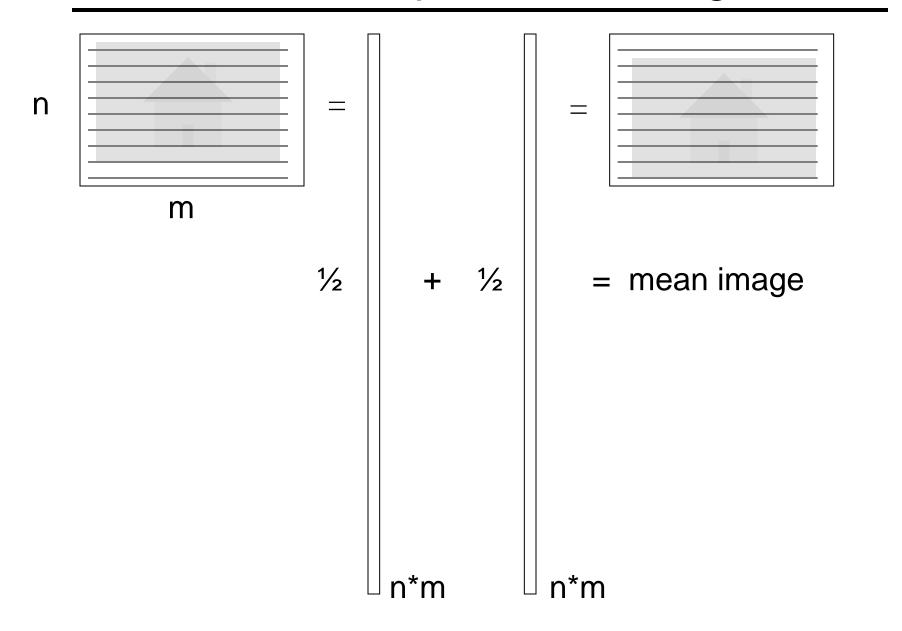
- Subpopulation means
- Deviations from the mean

# Images as Vectors



n\*m

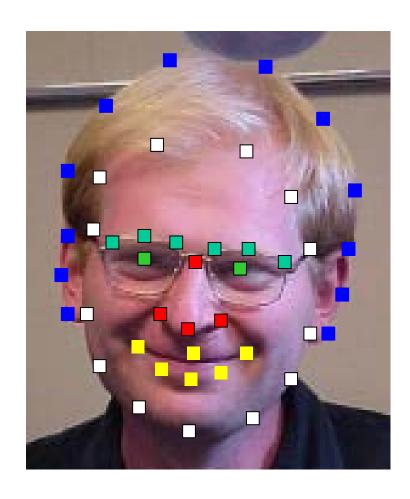
## Vector Mean: Importance of Alignment



# How to align faces?



# **Shape Vector**



Provides alignment!

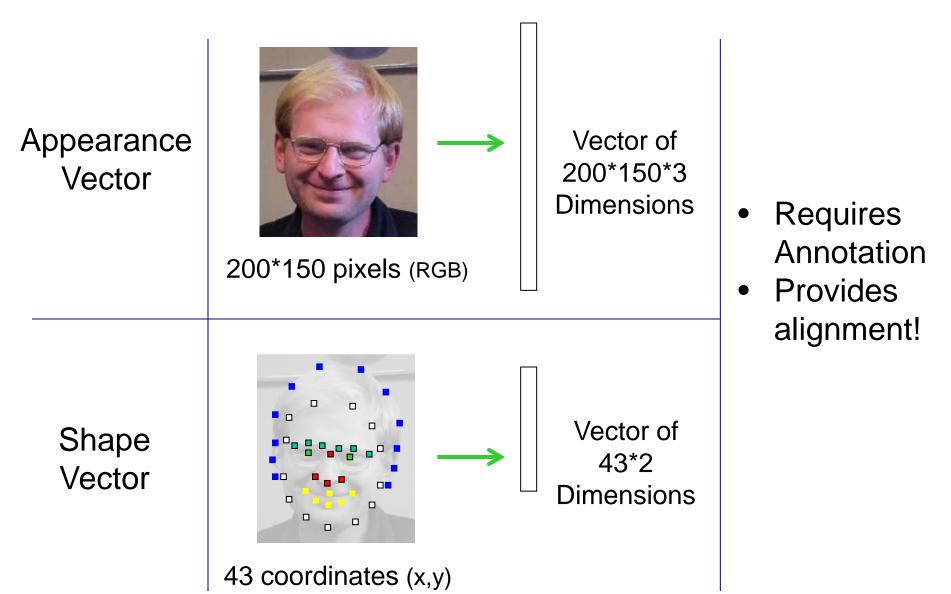
# Average Face



- 1. Warp to mean shape
- 2. Average pixels

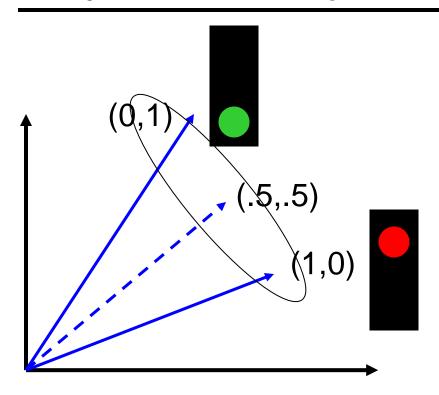


#### Appearance Vectors vs. Shape Vectors



Slide by Kevin Karsch

# Objects must span a subspace



#### Example







mean

Does not span a subspace

#### Subpopulation means

#### Examples:

- Male vs. female
- Happy vs. said
- Average Kids
- Happy Males
- Etc.
- http://www.faceresearch.org



Average kid



Average happy male

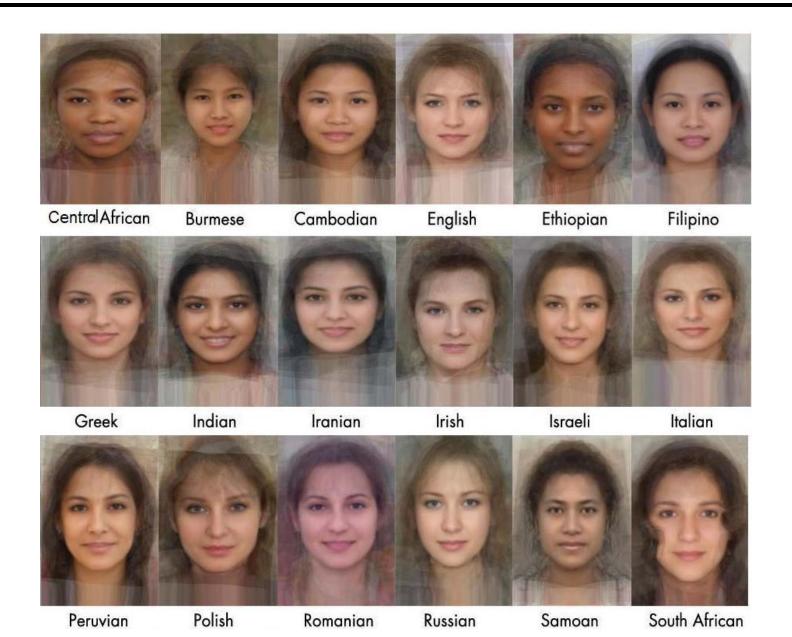


Average female

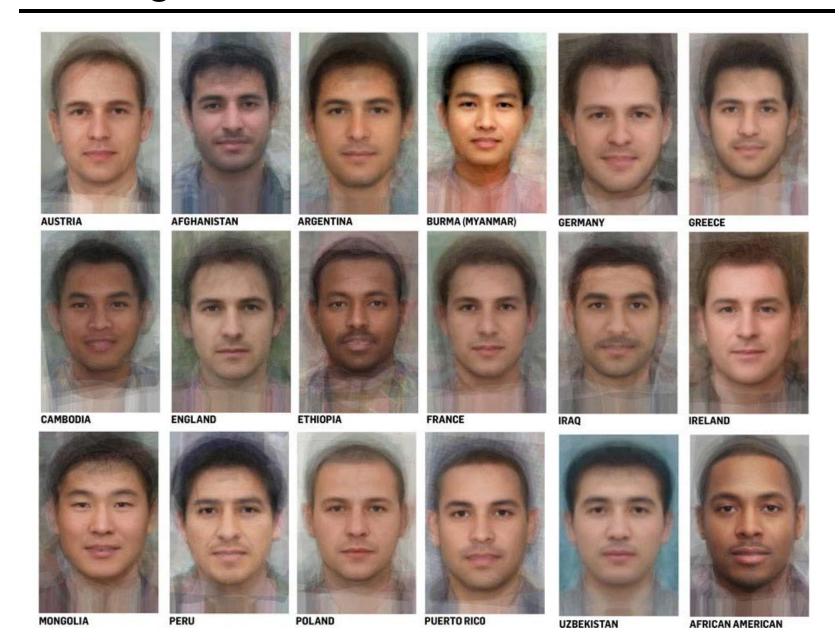


Average male

## Average Women of the world



# Average Men of the world



#### Deviations from the mean



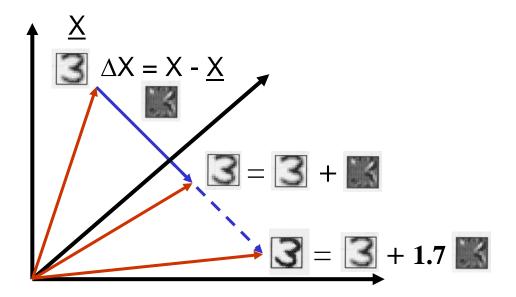


Image X Mean X



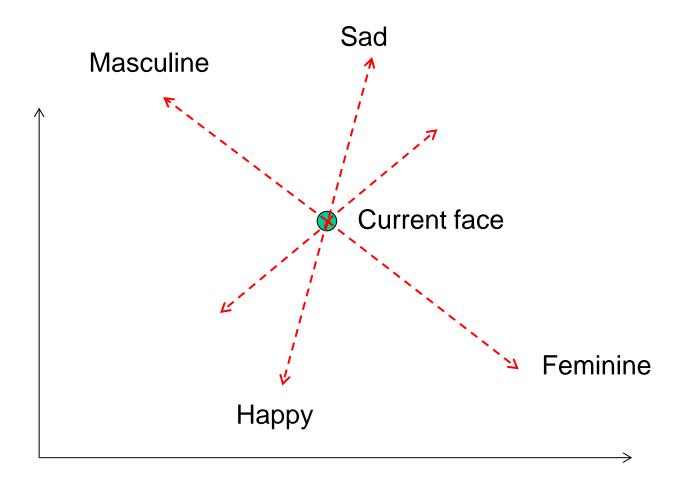
$$\Delta X = X - \underline{X}$$

#### Deviations from the mean



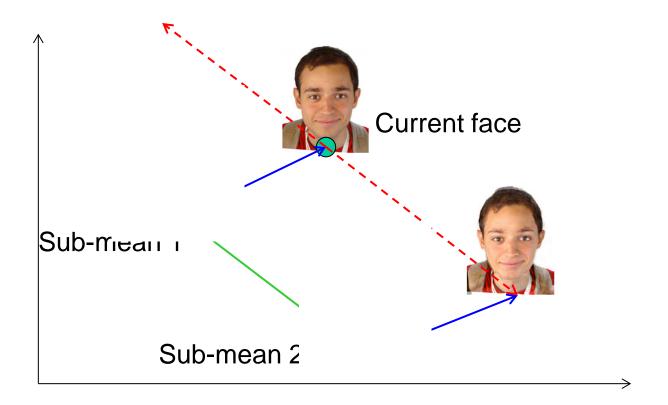
## Extrapolating faces

We can imagine various meaningful <u>directions</u>.



#### Manipulating faces

- How can we make a face look more female/male, young/old, happy/sad, etc.?
- http://www.faceresearch.org/demos/transform



# Manipulating Facial Appearance through Shape and Color

Duncan A. Rowland and David I. Perrett

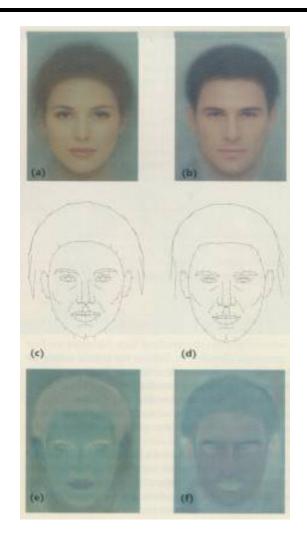
St Andrews University

IEEE CG&A, September 1995

### Face Modeling

Compute average faces (color and shape)

Compute deviations
between male and
female (vector and color
differences)



# Changing gender

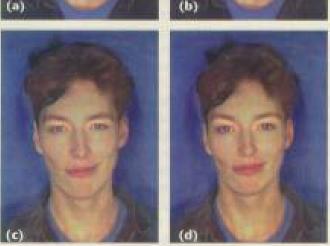
Deform shape and/or color of an input face in the direction of "more female"

original

(a) (b)

shape

color



both

# Enhancing gender



more same original androgynous more opposite

# Changing age

Face becomes "rounder" and "more textured" and "grayer"

original

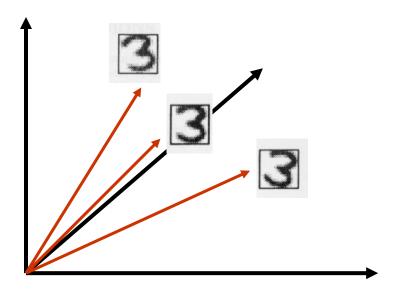
color



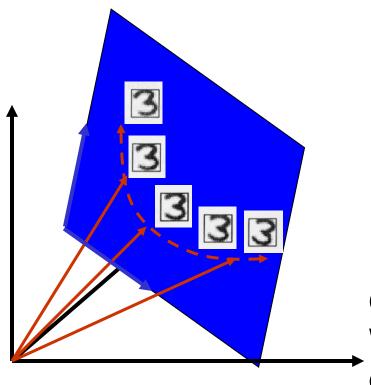
shape

both

# Back to the Subspace



#### Linear Subspace: convex combinations



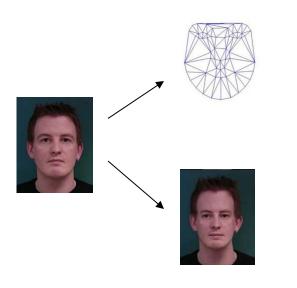
Any new image X can be obtained as weighted sum of stored "basis" images.

$$X = \sum_{i=1}^{m} a_i X_i$$

Our old friend, change of basis! What are the new coordinates of X?

#### The Morphable Face Model

The actual structure of a face is captured in the shape vector  $\mathbf{S} = (x_1, y_1, x_2, ..., y_n)^T$ , containing the (x, y) coordinates of the n vertices of a face, and the appearance (texture) vector  $\mathbf{T} = (R_1, G_1, B_1, R_2, ..., G_n, B_n)^T$ , containing the color values of the mean-warped face image.



Shape S

Appearance T

#### The Morphable face model

Again, assuming that we have m such vector pairs in full correspondence, we can form new shapes  $\mathbf{S}_{model}$  and new appearances  $\mathbf{T}_{model}$  as:

$$\mathbf{S}_{model} = \sum_{i=1}^{m} a_i \mathbf{S}_i \qquad \mathbf{T}_{model} = \sum_{i=1}^{m} b_i \mathbf{T}_i$$

$$s = \alpha_1 \cdot \mathbf{O} + \alpha_2 \cdot \mathbf{O} + \alpha_3 \cdot \mathbf{O} + \alpha_4 \cdot \mathbf{O} + \dots = \mathbf{S} \cdot \mathbf{a}$$

$$t = \beta_1 \cdot \mathbf{O} + \beta_2 \cdot \mathbf{O} + \beta_3 \cdot \mathbf{O} + \beta_4 \cdot \mathbf{O} + \dots = \mathbf{T} \cdot \mathbf{B}$$



If number of basis faces m is large enough to span the face subspace then: Any new face can be represented as a pair of vectors  $(\alpha_1, \alpha_2, ..., \alpha_m)^T \text{ and } (\beta_1, \beta_2, ..., \beta_m)^T!$ 

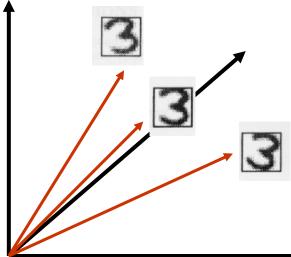
#### Issues:

- 1. How many basis images is enough?
- 2. Which ones should they be?
- 3. What if some variations are more important than others?
  - E.g. corners of mouth carry much more information than haircut

Need a way to obtain basis images automatically, in

order of importance!

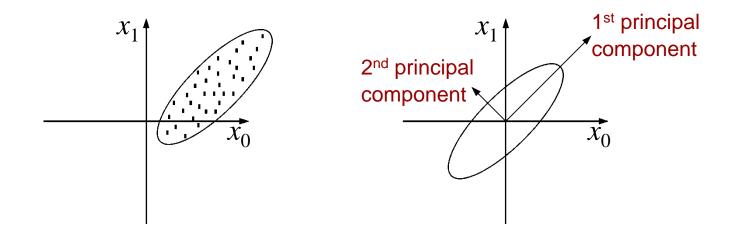
But what's important?



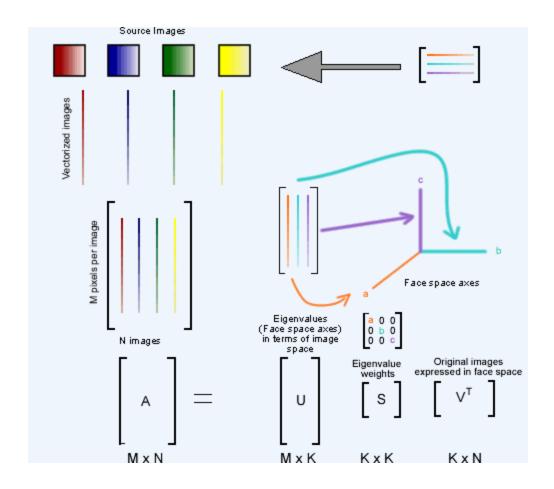
## Principal Component Analysis

Given a point set  $\{\vec{\mathbf{p}}_j\}_{j=1...P}$ , in an M-dim space, PCA finds a basis such that

- coefficients of the point set in that basis are uncorrelated
- first r < M basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) in the approximation (over all bases with dimension r)



#### PCA via Singular Value Decomposition

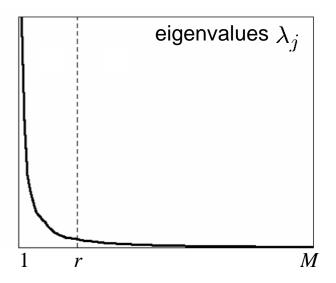


$$[u,s,v] = svd(A);$$

### Principal Component Analysis

# Choosing subspace dimension *r*:

- look at decay of the eigenvalues as a function of r
- Larger r means lower expected error in the subspace data approximation



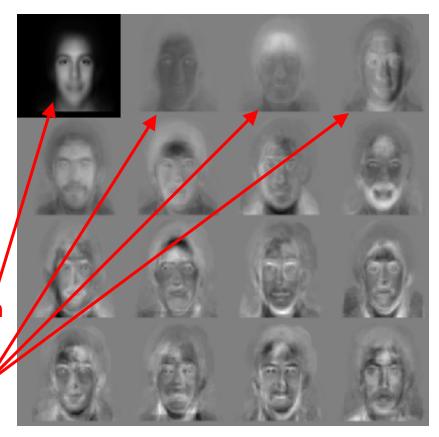
#### EigenFaces

First popular use of PCA on images was for modeling and recognition of faces [Kirby and Sirovich, 1990, Turk and Pentland, 1991]

- Collect a face ensemble
- Normalize for contrast, scale, & orientation.
- Remove backgrounds
- Apply PCA & choose the first N eigen-images that account for most of the variance of the data.
  mean

lighting variation

face



#### First 3 Shape Basis



Mean appearance

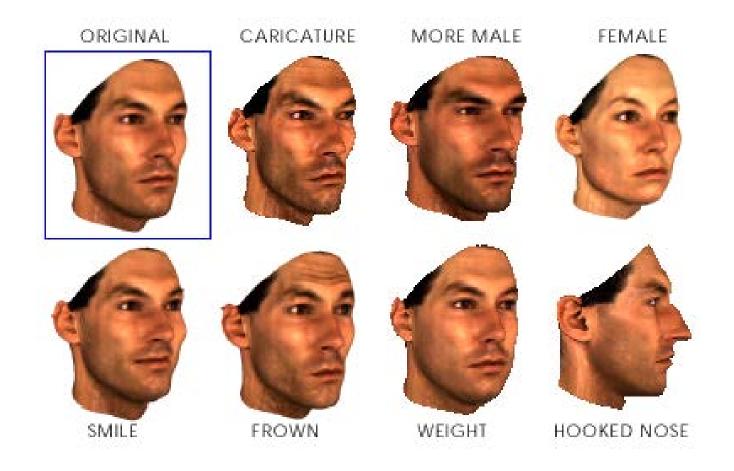






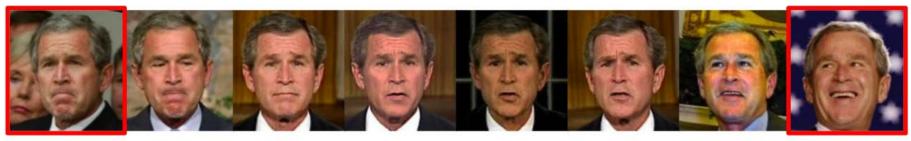
http://graphics.cs.cmu.edu/courses/15-463/2004\_fall/www/handins/brh/final/

#### Using 3D Geometry: Blinz & Vetter, 1999



http://www.youtube.com/watch?v=jrutZaYoQJo

#### Walking in the Face-graph!



Source

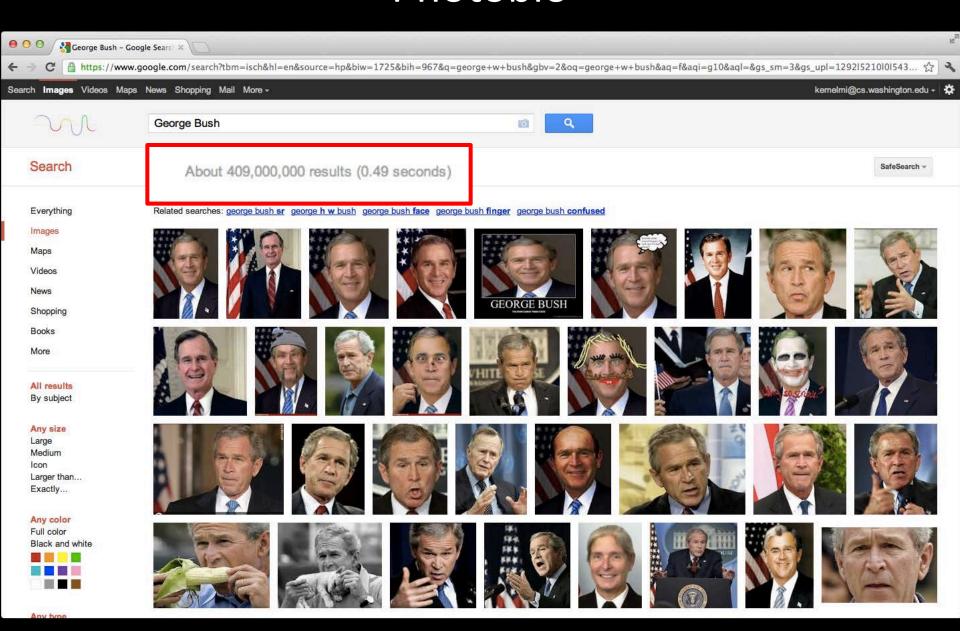
Automatically generated transition

**Target** 

Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, Steven M. Seitz. "Exploring Photobios." ACM Transactions on Graphics 30(4) (SIGGRAPH), Aug 2011.

http://vimeo.com/23561002

#### Photobio

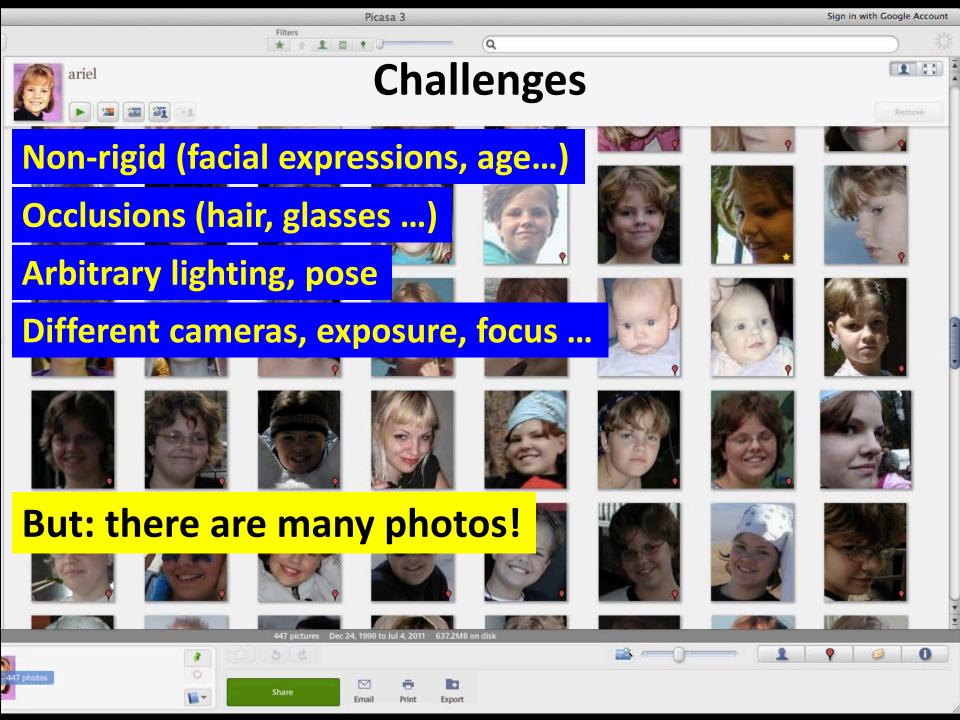


#### Photobio

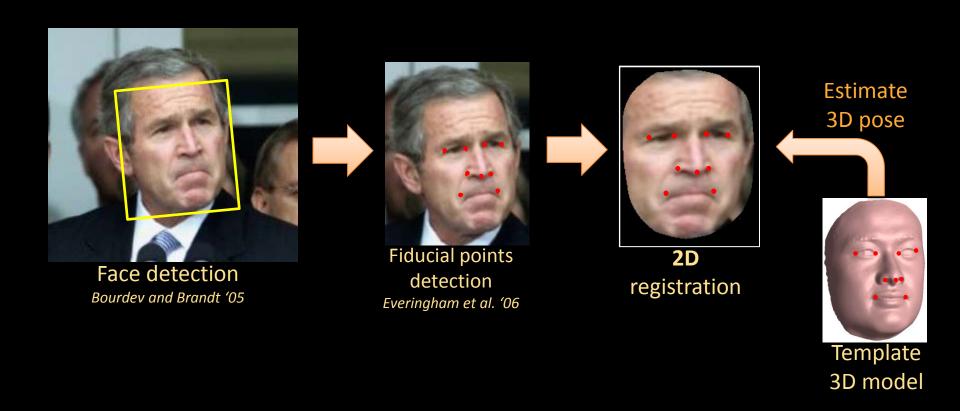


#### Photobio





#### Image registration



#### Image registration



# 3D transformed photos



### Represent the photo collection as a graph



Similarity between 2 photos



3D Head Pose similarity

Facial Expression similarity

Time similarity

### Represent the photo collection as a graph



Similarity between 2 photos



3D Head Pose similarity

Facial
Expression
similarity

Time similarity

### Represent the photo collection as a graph



Similarity between 2 photos



3D Head Pose similarity Facial Expression similarity

Time similarity

# Illumination-Aware Age Progression

#### CVPR 2014

<u>Ira Kemelmacher-Shlizerman</u>, <u>Supasorn Suwajanakorn</u>, <u>Steven M. Seitz</u>



http://www.youtube.com/watch?v=QuKluy7NAvE

# Image-Based Shaving











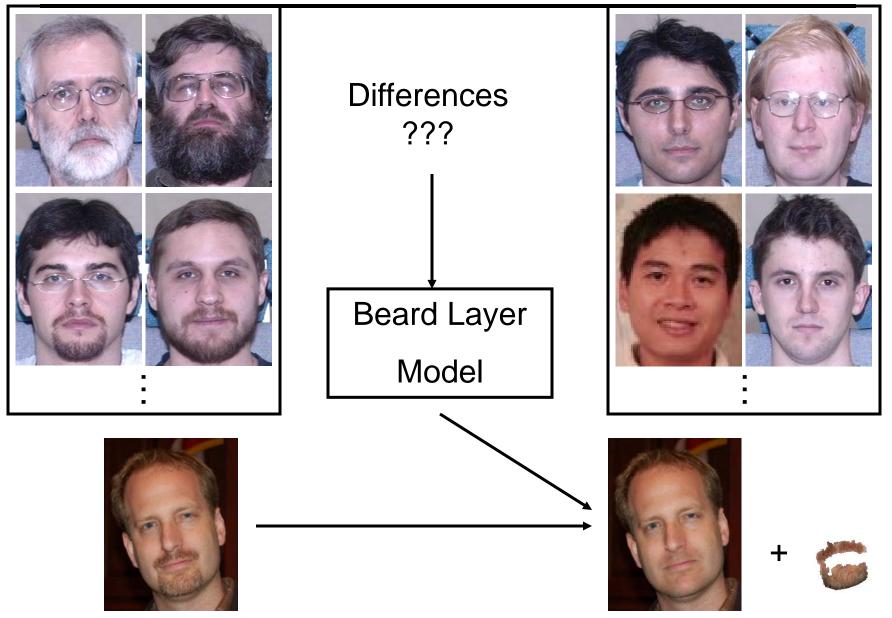






http://graphics.cs.cmu.edu/projects/imageshaving/

# The idea

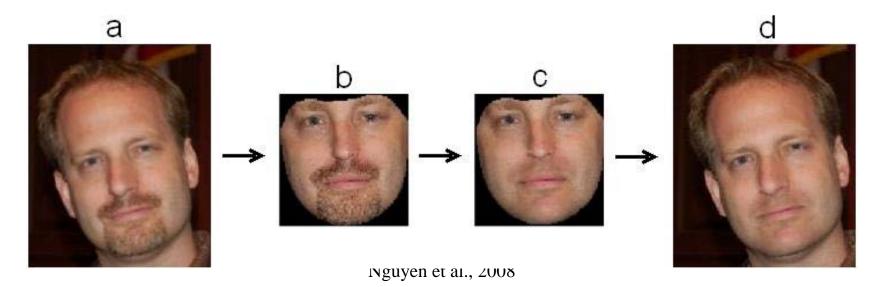


Nguyen et al., 2008

# Processing steps



68 landmarks



### Some results

